Skip to main content
Log in

Impaired contractile responses and altered expression and phosphorylation of Ca2+ sensitization proteins in gastric antrum smooth muscles from ob/ob mice

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Diabetic gastroparesis is a common complication of diabetes, adversely affecting quality of life with symptoms of abdominal discomfort, nausea, and vomiting. The pathogenesis of this complex disorder is not well understood, involving abnormalities in the extrinsic and enteric nervous systems, interstitial cells of Cajal (ICCs), smooth muscles and immune cells. The ob/ob mouse model of obesity and diabetes develops delayed gastric emptying, providing an animal model for investigating how gastric smooth muscle dysfunction contributes to the pathophysiology of diabetic gastroparesis. Although ROCK2, MYPT1, and CPI-17 activities are reduced in intestinal motility disorders, their functioning has not been investigated in diabetic gastroparesis. We hypothesized that reduced expression and phosphorylation of the myosin light chain phosphatase (MLCP) inhibitory proteins MYPT1 and CPI-17 in ob/ob gastric antrum smooth muscles could contribute to the impaired antrum smooth muscle function of diabetic gastroparesis. Spontaneous and carbachol- and high K+-evoked contractions of gastric antrum smooth muscles from 7 to 12 week old male ob/ob mice were reduced compared to age- and strain-matched controls. There were no differences in spontaneous and agonist-evoked intracellular Ca2+ transients and myosin light chain kinase expression. The F-actin:G-actin ratios were similar. Rho kinase 2 (ROCK2) expression was decreased at both ages. Basal and agonist-evoked MYPT1 and myosin light chain 20 phosphorylation, but not CPI-17 phosphorylation, was reduced compared to age-matched controls. These findings suggest that reduced MLCP inhibition due to decreased ROCK2 phosphorylation of MYPT1 in gastric antrum smooth muscles contributes to the antral dysmotility of diabetic gastroparesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez SM, Miner AS, Browne BM, Ratz PH (2010) Failure of Bay K 8644 to induce RhoA kinase-dependent calcium sensitization in rabbit blood vessels. Brit J Pharmacol 160:1326–1337

    Article  CAS  Google Scholar 

  • Asakawa A, Inui A, Ueno N, Makino S, Uemoto M, Fujino MA, Kasuga M (2003) Ob/ob mice as a model of delayed gastric emptying. J Diabetes Compl 17:27–28

    Article  Google Scholar 

  • Bhetwal BP, An CL, Fisher SA, Perrino BA (2011) Regulation of basal LC20 phosphorylation by MYPT1 and CPI-17 in murine gastric antrum, gastric fundus, and proximal colon smooth muscles. Neurogastroenterol & Motil 23:e425–e436

    Article  CAS  Google Scholar 

  • Cobine CA, Fong M, Hamilton R, Keef KD (2007) Species dependent differences in the actions of sympathetic nerves and noradrenaline in the internal anal sphincter. Neurogastroenterol & Motil 19:937–945

    Article  CAS  Google Scholar 

  • Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–148

    Article  PubMed  CAS  Google Scholar 

  • Depoortere I, Thijs T, Janssen S, De Smet B, Tack J (2010) Colitis affects the smooth muscle and neural response to motilin in the rabbit antrum. Brit J Pharmacol 159:384–393

    Article  CAS  Google Scholar 

  • Ejskjaer NT, Bradley JL, Buxton-Thomas MS, Edmonds ME, Howard ER, Purewal T, Thomas PK, Watkins PJ (1999) Novel surgical treatment and gastric pathology in diabetic gastroparesis. Diabet Med 16:488–495

    Article  PubMed  CAS  Google Scholar 

  • Eto M, Kitazawa T, Brautigan DL (2004) Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proc Nat Acad Sci 101:8888–8893

    Article  PubMed  CAS  Google Scholar 

  • Fu K, Mende Y, Bhetwal BP, Baker S, Perrino BA, Wirth B, Fisher SA (2012) Tra2b protein Is required for tissue-specific splicing of a smooth muscle myosin phosphatase targeting subunit alternative exon. J Biol Chem 287:16575–16585

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Huang J, He W, Zhu M, Kamm KE, and Stull JT (2013) Signaling through myosin light chain kinase in smooth muscles. J Biol Chem (Epub ahead of print)

  • Godoy MAF, Rattan S (2011) Role of rho kinase in the functional and dysfunctional tonic smooth muscles. Trends Pharmacol Sci 32:384–393

    Google Scholar 

  • Grover M, Farrugia G, Lurken MS, Bernard CE, Faussone-Pellegrini MS, Smyrk TC, Parkman HP, Abell TL, Snape WJ, Hasler WL, Unalp-Arida A, Nguyen L, Koch KL, Calles J, Lee L, Tonascia J, Hamilton FA, Pasricha PJ (2011) Cellular changes in diabetic and idiopathic gastroparesis. Gastroenterol 140:1575–1585

    Article  CAS  Google Scholar 

  • Hasler WL (2011) Gastroparesis: pathogenesis, diagnosis and management. Nat Rev Gastroenterol Hepatol 8:438–453

    Article  PubMed  CAS  Google Scholar 

  • Hirano K (2007) Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle. J Pharmacol Sci 104:109–115

    Article  PubMed  CAS  Google Scholar 

  • Horvath VJ, Vittal H, Lorincz A, Chen H, Almeida-Porada G, Redelman D, Ordog T (2006) Reduced stem cell factor links smooth muscle myopathy and loss of interstitial cells of Cajal in murine diabetic gastroparesis. Gastroenterol 130:759–770

    Article  CAS  Google Scholar 

  • Ichikawa K, Ito M, Hartshorne DJ (1996) Phosphorylation of the large subunit of myosin phosphatase and inhibition of phosphatase activity. J Biol Chem 271:4733–4740

    Article  PubMed  CAS  Google Scholar 

  • Iizuka K, Horikawa Y (2008) ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr J 55:617–624

    Article  PubMed  CAS  Google Scholar 

  • Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, Wu HY, Weiner HL (2010) Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Nat Acad Sci 107:9765–9770

    Article  PubMed  CAS  Google Scholar 

  • Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the house mouse. J Hered 41:317–318

    PubMed  CAS  Google Scholar 

  • Intagliata N, Koch K (2007) Gastroparesis in type 2 diabetes mellitus: prevalence, etiology, diagnosis, and treatment. Curr Gastroenterol Rep 9:270–279

    Article  PubMed  Google Scholar 

  • Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, Shi F, Zhou X (2010) Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer 127:505–512

    Article  PubMed  CAS  Google Scholar 

  • Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC (2009) Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol 587:2537–2553

    Article  PubMed  CAS  Google Scholar 

  • Kashyap P, Farrugia G (2010) Diabetic gastroparesis: what we have learned and had to unlearn in the past 5 years. Gut 59:1716–1726

    Article  PubMed  CAS  Google Scholar 

  • Khromov A, Choudhury N, Stevenson AS, Somlyo AV, Eto M (2009) Phosphorylation-dependent autoinhibition of myosin light chain phosphatase accounts for Ca2 + sensitization force of smooth muscle contraction. J Biol Chem 284:21569–21579

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Hennig GW, Smith TK, Perrino BA (2008) Phospholamban knockout increases CaM kinase II activity and intracellular Ca2 + wave activity and alters contractile responses of murine gastric antrum. Am J Physiol Cell Physiol 294:C432–C441

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Eto M, Woodsome TP, Brautigan DL (2000) Agonists Trigger G Protein-mediated Activation of the CPI-17 Inhibitor Phosphoprotein of Myosin Light Chain Phosphatase to Enhance Vascular Smooth Muscle Contractility. J Biol Chem 275:9897–9900

    Article  PubMed  CAS  Google Scholar 

  • Kovac JR, Preiksaitis HG, Sims SM (2005) Functional and molecular analysis of L-type calcium channels in human esophagus and lower esophageal sphincter smooth muscle. Am J Physiol Gastrointest Liver Physiol 289:G998–G1006

    Article  PubMed  CAS  Google Scholar 

  • Leiter EH (1992) Variation in the severity and duration of hyperglycemia in the C57BL/6 J-ob/ob (obese) mouse. JAX Notes 451

  • Muranyi A, Derkach D, Erdodi F, Kiss A, Ito M, Hartshorne DJ (2005) Phosphorylation of Thr695 and Thr850 on the myosin phosphatase target subunit: inhibitory effects and occurrence in A7r5 cells. FEBS Lett 579:6611–6615

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS (2006) Signaling for contraction and relaxation in smooth muscle of the gut. Annu Rev Physiol 68:345–374

    Article  PubMed  CAS  Google Scholar 

  • Murthy KS, Zhou H, Grider JR, Brautigan DL, Eto M, Makhlouf GM (2003) Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation via Rho-associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI-17 pathway. Biochem J 374:145–155

    Article  PubMed  CAS  Google Scholar 

  • Ohama T, Hori M, Sato K, Ozaki H, Karaki H (2003) Chronic treatment with interleukin-1b attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J Biol Chem 278:48794–48804

    Article  PubMed  CAS  Google Scholar 

  • Ohama T, Hori M, Momotani E, Iwakura Y, Guo F, Kishi H, Ozaki H (2007) Intestinal inflammation downregulates smooth muscle CPI-17 through induction of TNF-alpha and causes motility disorders. Am J Physiol Gastrointest Liver Physiol 292:G1429–G1438

    Article  PubMed  CAS  Google Scholar 

  • Ordog T, Takayama I, Cheung WK, Ward SM, Sanders KM (2000) Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes 49:1731–1739

    Article  PubMed  CAS  Google Scholar 

  • Ordog T, Hayashi Y, Gibbons SJ (2009) Cellular pathogenesis of diabetic gastroenteropathy. Minerva Gastroenterolica Diabetica 55:315–342

    CAS  Google Scholar 

  • Parkman HP, Hasler WL, Fisher RS (2004) American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterol 127:1592–1622

    Article  Google Scholar 

  • Patel CA, Rattan S (2006) Spontaneously tonic smooth muscle has characteristically higher levels of RhoA/ROK compared with the phasic smooth muscle. Am J Physiol Gastrointest Liver Physiol 291:G830–G837

    Article  PubMed  CAS  Google Scholar 

  • Rattan S, Phillips BR, Maxwell PJ (2010) RhoA/Rho-kinase: pathophysiologic and therapeutic implications in gastrointestinal smooth muscle tone and relaxation. Gastroenterol 138:13–18

    Article  CAS  Google Scholar 

  • Rich A, Kenyon JL, Hume JR, Overturf K, Horowitz B, Sanders KM (1993) Dihydropyridine-sensitive calcium channels expressed in canine colonic smooth muscle cells. Am J Physiol 264:C745–C754

    PubMed  CAS  Google Scholar 

  • Riddick N, Ki O, Surks HK (2008) Targeting by myosin phosphatase-RhoA interacting protein mediates RhoA/ROCK regulation of myosin phosphatase. J Cell Biochem 103:1158–1170

    Article  PubMed  CAS  Google Scholar 

  • Samad F, Yamamoto K, Pandey M, Loskutoff DJ (1997) Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol Med 3:37–48

    PubMed  CAS  Google Scholar 

  • Sanders KM (2008) Regulation of smooth muscle excitation and contraction. Neurogastroenterol & Motil 20:39–53

    Article  CAS  Google Scholar 

  • Sato K, Ohkura S, Kitahara Y, Ohama T, Hori M, Sato M, Kobayashi S, Sasaki Y, Hayashi T, Nasu T, Ozaki H (2007) Involvement of CPI-17 downregulation in the dysmotility of the colon from dextran sodium sulphate-induced experimental colitis in a mouse model. Neurogastroenterol & Motil 19:504–514

    Article  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2 + sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    PubMed  CAS  Google Scholar 

  • Soykan I, Sivri B, Sarosiek I, Kiernan B, Mccallum RW (1998) Demography, clinical character-istics, psychological and abuse profiles, treatment, and long-term follow-up of patients with gastroparesis. Dig Dis Sci 43:2398–2404

    Article  PubMed  CAS  Google Scholar 

  • Surks HK, Mendelsohn ME (2003) Dimerization of cGMP-dependent protein kinase 1a and the myosin-binding subunit of myosin phosphatase: role of leucine zipper domains. Cell Sig 15:937–944

    Article  CAS  Google Scholar 

  • Szucsik JC, Lessard JL (1995) Cloning and sequence analysis of the mouse smooth muscle g-enteric actin gene. Genomics 28:154–162

    Article  PubMed  CAS  Google Scholar 

  • Tejani AD, Walsh MP, Rembold CM (2011) Tissue length modulates “stimulated actin polymerization,” force augmentation, and the rate of swine carotid arterial contraction. Am J Physiol - Cell Physiol 301:C1470–C1478

    Article  PubMed  CAS  Google Scholar 

  • Wang YR, Fisher RS, Parkman HP (2008) Gastroparesis-related hospitalizations in the United States: trends, characteristics, and cutcomes, 1995–2004. Am J Gastroenterol 103:313–322

    Article  PubMed  Google Scholar 

  • Wang Y, Zheng XR, Riddick N, Bryden M, Baur W, Zhang X, Surks HK (2009) ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ Res 104:531–540

    Article  PubMed  CAS  Google Scholar 

  • Wegener JW, Schulla V, Koller A, Klugbauer N, Feil R, Hofmann F (2006) Control of intestinal motility by the Ca(v)1.2 L-type calcium channel in mice. FASEB J 20:1260–1262

    Article  PubMed  CAS  Google Scholar 

  • Wong CC-L, Wong C, Tung EK, Au SL, Lee JM, Poon RT, Man K, Ng IO (2011) The MicroRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterol 140:322–331

    Article  CAS  Google Scholar 

  • Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T (2001) Expression of CPI-17 and myosin phosphatase correlates with Ca2+ sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol 535:553–564

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Suzuki H (1997) Electrical responses of gastric smooth muscles in streptozotocin-induced diabetic rats. Am J Physiol Gastrointest Liver Physiol 272:G77–G83

    CAS  Google Scholar 

  • Yamamoto T, Watabe K, Nakahara M, Ogiyama H, Kiyohara T, Tsutsui S, Tamura S, Shinomura Y, Hayashi N (2008) Disturbed gastrointestinal motility and decreased interstitial cells of Cajal in diabetic db/db mice. J Gastroenterol Hepatol 23:660–667

    Article  PubMed  Google Scholar 

  • Yoneda A, Multhaupt HAB, Couchman JR (2005) The Rho kinases I and II regulate different aspects of myosin II activity. J Cell Biol 170:443–453

    Article  PubMed  CAS  Google Scholar 

  • Yuen S, Ogut O, Brozovich FV (2011) MYPT1 Protein isoforms are differentially phosphorylated by protein kinase G. J Biol Chem 286:37274–37279

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Du L, Gunst SJ (2010) The effects of the small GTPase RhoA on the muscarinic contraction of airway smooth muscle result from its role in regulating actin polymerization. Am J Physiol Cell Physiol 299:C298–C306

    Article  PubMed  CAS  Google Scholar 

  • Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW, Guan XY, Lin MC, Zeng YX, Kung HF, Xie D (2012) The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61:278–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM103513 (B.A.P.). The authors thank Sean M. Ward, and Kathy D. Keef for helpful comments and suggestions, and gratefully acknowledge Steven A. Fisher (U. of Maryland) for the gift of the MYPT1 LZ∓ antibodies.

Conflict of interest

There are no conflicts of interest relevant to this article to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Perrino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhetwal, B.P., An, C., Baker, S.A. et al. Impaired contractile responses and altered expression and phosphorylation of Ca2+ sensitization proteins in gastric antrum smooth muscles from ob/ob mice. J Muscle Res Cell Motil 34, 137–149 (2013). https://doi.org/10.1007/s10974-013-9341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9341-1

Keywords

Navigation