Skip to main content

Advertisement

Log in

Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease that makes walking and breathing difficult. DMD is caused by an X-linked (Xp21) mutation in the dystrophin gene. Dystrophin is a scaffolding protein located in the sarcolemmal cytoskeleton, important in maintaining structural integrity and regulating muscle cell (muscle fiber) growth and repair. Dystrophin deficiency in mouse models (e.g., mdx mouse) destabilizes the interface between muscle fibers and the extracellular matrix, resulting in profound damage, inflammation, and weakness in diaphragm and limb muscles. While the link between dystrophin deficiency with inflammation and pathology is multi-factorial, elevated oxidative stress has been proposed as a central mediator. Unfortunately, the use of non-specific antioxidant scavengers in mouse and human studies has led to inconsistent results, obscuring our understanding of the importance of redox signaling in pathology of muscular dystrophy. However, recent studies with more mechanistic approaches in mdx mice suggest that NAD(P)H oxidase and nuclear factor-kappaB are important in amplifying dystrophin-deficient muscle pathology. Therefore, more targeted antioxidant therapeutics may ameliorate damage and weakness in human population, thus promoting better muscle function and quality of life. This review will focus upon the pathobiology of dystrophin deficiency in diaphragm and limb muscle primarily in mouse models, with a rationale for development of targeted therapeutic antioxidants in DMD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Salam E, Abdel-Meguid I, Korraa SS (2009) Markers of degeneration and regeneration in Duchenne muscular dystrophy. Acta Myol 28(3):94–100

    PubMed  CAS  Google Scholar 

  • Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M, Li ZW, Beg AA, Ghosh S, Sahenk Z, Weinstein M, Gardner KL, Rafael-Fortney JA, Karin M, Tidball JG, Baldwin AS, Guttridge DC (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117(4):889–901

    PubMed  CAS  Google Scholar 

  • Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, Weigl C, Schuler G, Hambrecht R (1999) Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol 33(4):959–965

    PubMed  CAS  Google Scholar 

  • Adams ME, Kramarcy N, Krall SP, Rossi SG, Rotundo RL, Sealock R, Froehner SC (2000) Absence of alpha-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J Cell Biol 150(6):1385–1398

    PubMed  CAS  Google Scholar 

  • Allen DG, Gervasio OL, Yeung EW, Whitehead NP (2010) Calcium and the damage pathways in muscular dystrophy. Can J Physiol Pharmacol 88(2):83–91

    PubMed  CAS  Google Scholar 

  • Arbogast S, Smith J, Matuszczak Y, Hardin BJ, Moylan JS, Smith JD, Ware J, Kennedy AR, Reid MB (2007) Bowman-Birk inhibitor concentrate prevents atrophy, weakness, and oxidative stress in soleus muscle of hindlimb-unloaded mice. J Appl Physiol 102(3):956–964

    PubMed  CAS  Google Scholar 

  • Bach JR, Martinez D (2011) Duchenne muscular dystrophy: continuous noninvasive ventilatory support prolongs survival. Respir Care 56(6):744–750

    PubMed  Google Scholar 

  • Badalamente MA, Stracher A (2000) Delay of muscle degeneration and necrosis in mdx mice by calpain inhibition. Muscle Nerve 23(1):106–111

    PubMed  CAS  Google Scholar 

  • Baker MS, Austin L (1989) The pathological damage in Duchenne muscular dystrophy may be due to increased intracellular oxy-radical generation caused by the absence of dystrophin and subsequent alterations in Ca2 + metabolism. Med Hypotheses 29(3):187–193

    PubMed  CAS  Google Scholar 

  • Berneske GM, Butson AR, Gauld EN, Levy D (1960) Clinical trial of high dosage vitamin E in human muscular dystrophy. Can Med Assoc J 82:418–421

    Google Scholar 

  • Binder HJ, Herting DC, Hurst V, Finch SC, Spiro HM (1965) Tocopherol deficiency in man. N Engl J Med 273(24):1289–1297

    PubMed  CAS  Google Scholar 

  • Bornman L, Rossouw H, Gericke GS, Polla BS (1998) Effects of iron deprivation on the pathology and stress protein expression in murine X-linked muscular dystrophy. Biochem Pharmacol 56(6):751–757

    PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82(5):743–752

    PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5):757–767

    PubMed  CAS  Google Scholar 

  • Buck M, Chojkier M (1996) Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 15(8):1753–1765

    PubMed  CAS  Google Scholar 

  • Buetler TM, Renard M, Offord EA, Schneider H, Ruegg UT (2002) Green tea extract decreases muscle necrosis in mdx mice and protects against reactive oxygen species. Am J Clin Nutr 75(4):749–753

    PubMed  CAS  Google Scholar 

  • Cai B, Spencer MJ, Nakamura G, Tseng-Ong L, Tidball JG (2000) Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors. Am J Pathol 156(5):1789–1796

    PubMed  CAS  Google Scholar 

  • Carlson CG, Samadi A, Siegel A (2005) Chronic treatment with agents that stabilize cytosolic IkappaB-alpha enhances survival and improves resting membrane potential in MDX muscle fibers subjected to chronic passive stretch. Neurobiol Dis 20(3):719–730

    PubMed  CAS  Google Scholar 

  • Carter GT, McDonald CM (2000) Preserving function in Duchenne dystrophy with long-term pulse prednisone therapy. Am J Phys Med Rehabil 79(5):455–458

    PubMed  CAS  Google Scholar 

  • Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA (2007) Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21(9):2195–2204

    PubMed  CAS  Google Scholar 

  • Chang WJ, Iannaccone ST, Lau KS, Masters BS, McCabe TJ, McMillan K, Padre RC, Spencer MJ, Tidball JG, Stull JT (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci U S A 93(17):9142–9147

    PubMed  CAS  Google Scholar 

  • Chao DS, Silvagno F, Bredt DS (1998) Muscular dystrophy in mdx mice despite lack of neuronal nitric oxide synthase. J Neurochem 71(2):784–789

    PubMed  CAS  Google Scholar 

  • Chen M, Cheng C, Yan M, Niu S, Gao S, Shi S, Liu H, Qin Y, Shen A (2008) Involvement of CAPON and nitric oxide synthases in rat muscle regeneration after peripheral nerve injury. J Mol Neurosci 34(1):89–100

    PubMed  CAS  Google Scholar 

  • Childers MK, Okamura CS, Bogan DJ, Bogan JR, Petroski GF, McDonald K, Kornegay JN (2002) Eccentric contraction injury in dystrophic canine muscle. Arch Phys Med Rehabil 83(11):1572–1578

    PubMed  Google Scholar 

  • Crosbie RH, Straub V, Yun HY, Lee JC, Rafael JA, Chamberlain JS, Dawson VL, Dawson TM, Campbell KP (1998) mdx muscle pathology is independent of nNOS perturbation. Hum Mol Genet 7(5):823–829

    PubMed  CAS  Google Scholar 

  • Dalla Libera L, Sabbadini R, Renken C, Ravara B, Sandri M, Betto R, Angelini A, Vescovo G (2001) Apoptosis in the skeletal muscle of rats with heart failure is associated with increased serum levels of TNF-alpha and sphingosine. J Mol Cell Cardiol 33(10):1871–1878

    PubMed  CAS  Google Scholar 

  • De Pasquale L, D’Amico A, Verardo M, Petrini S, Bertini E, De Benedetti F (2012) Increased muscle expression of interleukin-17 in Duchenne muscular dystrophy. Neurology 78(17):1309–1314

    PubMed  Google Scholar 

  • Disatnik MH, Rando TA (1999) Integrin-mediated muscle cell spreading. The role of protein kinase c in outside-in and inside-out signaling and evidence of integrin cross-talk. J Biol Chem 274(45):32486–32492

    PubMed  CAS  Google Scholar 

  • Disatnik MH, Dhawan J, Yu Y, Beal MF, Whirl MM, Franco AA, Rando TA (1998) Evidence of oxidative stress in mdx mouse muscle: studies of the pre-necrotic state. J Neurol Sci 161(1):77–84

    PubMed  CAS  Google Scholar 

  • Disatnik MH, Chamberlain JS, Rando TA (2000) Dystrophin mutations predict cellular susceptibility to oxidative stress. Muscle Nerve 23(5):784–792

    PubMed  CAS  Google Scholar 

  • Dorchies OM, Wagner S, Vuadens O, Waldhauser K, Buetler TM, Kucera P, Ruegg UT (2006) Green tea extract and its major polyphenol (-)-epigallocatechin gallate improve muscle function in a mouse model for Duchenne muscular dystrophy. Am J Physiol Cell Physiol 290(2):C616–C625

    PubMed  CAS  Google Scholar 

  • Dupont-Versteegden EE, McCarter RJ (1992) Differential expression of muscular dystrophy in diaphragm versus hindlimb muscles of mdx mice. Muscle Nerve 15(10):1105–1110

    PubMed  CAS  Google Scholar 

  • Durham WJ, Arbogast S, Gerken E, Li YP, Reid MB (2006) Progressive nuclear factor-kappaB activation resistant to inhibition by contraction and curcumin in mdx mice. Muscle Nerve 34(3):298–303

    PubMed  CAS  Google Scholar 

  • Escolar DM, Scacheri CG (2001) Pharmacologic and genetic therapy for childhood muscular dystrophies. Curr Neurol Neurosci Rep 1(2):168–174

    PubMed  CAS  Google Scholar 

  • Fecchi K, Volonte D, Hezel MP, Schmeck K, Galbiati F (2006) Spatial and temporal regulation of GLUT4 translocation by flotillin-1 and caveolin-3 in skeletal muscle cells. FASEB J 20(6):705–707

    PubMed  CAS  Google Scholar 

  • Fenichel GM, Brooke MH, Griggs RC, Mendell JR, Miller JP, Moxley RT 3rd, Park JH, Provine MA, Florence J, Kaiser KK et al (1988) Clinical investigation in Duchenne muscular dystrophy: penicillamine and vitamin E. Muscle Nerve 11(11):1164–1168

    PubMed  CAS  Google Scholar 

  • Fisher AB (2009) Redox signaling across cell membranes. Antioxid Redox Signal 11(6):1349–1356

    PubMed  CAS  Google Scholar 

  • Galbiati F, Razani B, Lisanti MP (2001) Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med 7(10):435–441

    PubMed  CAS  Google Scholar 

  • Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J Cell Sci 121(Pt 13):2246–2255

    PubMed  CAS  Google Scholar 

  • Grady RM, Grange RW, Lau KS, Maimone MM, Nichol MC, Stull JT, Sanes JR (1999) Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1(4):215–220

    PubMed  CAS  Google Scholar 

  • Grounds MD, Torrisi J (2004) Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J 18(6):676–682

    PubMed  CAS  Google Scholar 

  • Hartel JV, Granchelli JA, Hudecki MS, Pollina CM, Gosselin LE (2001) Impact of prednisone on TGF-beta1 and collagen in diaphragm muscle from mdx mice. Muscle Nerve 24(3):428–432

    PubMed  CAS  Google Scholar 

  • Hauser E, Hoger H, Bittner R, Widhalm K, Herkner K, Lubec G (1995) Oxyradical damage and mitochondrial enzyme activities in the mdx mouse. Neuropediatrics 26(5):260–262

    PubMed  CAS  Google Scholar 

  • Haycock JW, MacNeil S, Jones P, Harris JB, Mantle D (1996) Oxidative damage to muscle protein in Duchenne muscular dystrophy. NeuroReport 8(1):357–361

    PubMed  CAS  Google Scholar 

  • Hess DR (2012) The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation. Respir Care 57 (6):900–918; discussion 918–920

    Google Scholar 

  • Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S, Mornet D (2008) l-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 172(6):1509–1519

    PubMed  CAS  Google Scholar 

  • Hodgetts S, Radley H, Davies M, Grounds MD (2006) Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 16(9–10):591–602

    PubMed  Google Scholar 

  • Hoshino S, Ohkoshi N, Ishii A, Shoji S (2002) The expression of alpha-dystrobrevin and dystrophin during skeletal muscle regeneration. J Muscle Res Cell Motil 23(2):131–138

    PubMed  CAS  Google Scholar 

  • Huang P, Zhao XS, Fields M, Ransohoff RM, Zhou L (2009) Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 23(8):2539–2548

    PubMed  CAS  Google Scholar 

  • Ishikawa Y, Miura T, Aoyagi T, Ogata H, Hamada S, Minami R (2011) Duchenne muscular dystrophy: survival by cardio-respiratory interventions. Neuromuscul Disord 21(1):47–51

    PubMed  Google Scholar 

  • Jones KJ, Compton AG, Yang N, Mills MA, Peters MF, Mowat D, Kunkel LM, Froehner SC, North KN (2003) Deficiency of the syntrophins and alpha-dystrobrevin in patients with inherited myopathy. Neuromuscul Disord 13(6):456–467

    PubMed  CAS  Google Scholar 

  • Kaczor JJ, Hall JE, Payne E, Tarnopolsky MA (2007) Low intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice. Free Radic Biol Med 43(1):145–154

    PubMed  CAS  Google Scholar 

  • Kameya S, Miyagoe Y, Nonaka I, Ikemoto T, Endo M, Hanaoka K, Nabeshima Y, Takeda S (1999) Alpha1-syntrophin gene disruption results in the absence of neuronal-type nitric-oxide synthase at the sarcolemma but does not induce muscle degeneration. J Biol Chem 274(4):2193–2200

    PubMed  CAS  Google Scholar 

  • Kaminski HJ, Andrade FH (2001) Nitric oxide: biologic effects on muscle and role in muscle diseases. Neuromuscul Disord 11(6–7):517–524

    PubMed  CAS  Google Scholar 

  • Kim J-H, Lawler JM (2012) Amplification of proinflammatory phenotype, damage, and weakness by oxidative stress in the diaphragm muscle of mdx mice. Free Radic Biol Med 52(9):1597–1606

    PubMed  CAS  Google Scholar 

  • Kim J-H, Kwak HB, Lawler JM (2008) NAD(P)H oxidase inhibition upregulates anti-apoptotic BAG-4 protein expression in the mdx diaphragm. FASEB J 22(959):8

    Google Scholar 

  • Kosek DJ, Bamman MM (2008) Modulation of the dystrophin-associated protein complex in response to resistance training in young and older men. J Appl Physiol 104(5):1476–1484

    PubMed  CAS  Google Scholar 

  • Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17(3):386–396

    PubMed  CAS  Google Scholar 

  • Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82(7):434–448

    PubMed  CAS  Google Scholar 

  • Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119(3):624–635

    PubMed  CAS  Google Scholar 

  • Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35(1):9–16

    PubMed  CAS  Google Scholar 

  • Lawler JM, Hord JM, Yang Lee, Kumar Joshi, and Jong-Hee Kim (2011) Redox regulation of caveolin-3 and MMP-9 in the diaphragm of mdx mice. FASEB J LB:519

  • Li H, Mittal A, Makonchuk DY, Bhatnagar S, Kumar A (2009) Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum Mol Genet 18(14):2584–2598

    PubMed  CAS  Google Scholar 

  • Lim JH, Kim DY, Bang MS (2004) Effects of exercise and steroid on skeletal muscle apoptosis in the mdx mouse. Muscle Nerve 30(4):456–462

    PubMed  Google Scholar 

  • Lynch GS (2004) Role of contraction-induced injury in the mechanisms of muscle damage in muscular dystrophy. Clin Exp Pharmacol Physiol 31(8):557–561

    PubMed  CAS  Google Scholar 

  • Lynch GS, Rafael JA, Hinkle RT, Cole NM, Chamberlain JS, Faulkner JA (1997) Contractile properties of diaphragm muscle segments from old mdx and old transgenic mdx mice. Am J Physiol 272(6 Pt 1):C2063–C2068

    PubMed  CAS  Google Scholar 

  • Lynch GS, Hinkle RT, Chamberlain JS, Brooks SV, Faulkner JA (2001) Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol 535(Pt 2):591–600

    PubMed  CAS  Google Scholar 

  • Matsumura K, Campbell KP (1994) Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve 17(1):2–15

    PubMed  CAS  Google Scholar 

  • McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK (2007) Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 175(2):150–159

    PubMed  CAS  Google Scholar 

  • Mendell JR, Engel WK, Derrer EC (1971) Duchenne muscular dystrophy: functional ischemia reproduces its characteristic lesions. Science 172(988):1143–1145

    PubMed  CAS  Google Scholar 

  • Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li C, Galloway G, Malik V, Coley B, Clark KR, Li J, Xiao X, Samulski J, McPhee SW, Samulski RJ, Walker CM (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363(15):1429–1437

    PubMed  CAS  Google Scholar 

  • Messina S, Altavilla D, Aguennouz M, Seminara P, Minutoli L, Monici MC, Bitto A, Mazzeo A, Marini H, Squadrito F, Vita G (2006a) Lipid peroxidation inhibition blunts nuclear factor-kappaB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am J Pathol 168(3):918–926

    PubMed  CAS  Google Scholar 

  • Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D, Squadrito F, Vita G (2006b) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198(1):234–241

    PubMed  CAS  Google Scholar 

  • Messina S, Bitto A, Aguennouz M, Mazzeo A, Migliorato A, Polito F, Irrera N, Altavilla D, Vita GL, Russo M, Naro A, De Pasquale MG, Rizzuto E, Musaro A, Squadrito F, Vita G (2009) Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone. Exp Neurol 220(2):349–358

    PubMed  CAS  Google Scholar 

  • Messina S, Vita GL, Aguennouz M, Sframeli M, Romeo S, Rodolico C, Vita G (2011) Activation of NF-kappaB pathway in Duchenne muscular dystrophy: relation to age. Acta Myol 30(1):16–23

    PubMed  CAS  Google Scholar 

  • Miyagoe-Suzuki Y, Takeda SI (2001) Association of neuronal nitric oxide synthase (nNOS) with alpha1-syntrophin at the sarcolemma. Microsc Res Tech 55(3):164–170

    PubMed  CAS  Google Scholar 

  • Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G (2003) Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 60(6):993–997

    PubMed  CAS  Google Scholar 

  • Morrison J, Lu QL, Pastoret C, Partridge T, Bou-Gharios G (2000) T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Invest 80(6):881–891

    PubMed  CAS  Google Scholar 

  • Nakae Y, Stoward PJ, Kashiyama T, Shono M, Akagi A, Matsuzaki T, Nonaka I (2004) Early onset of lipofuscin accumulation in dystrophin-deficient skeletal muscles of DMD patients and mdx mice. J Mol Histol 35(5):489–499

    PubMed  CAS  Google Scholar 

  • Nakae Y, Hirasaka K, Goto J, Nikawa T, Shono M, Yoshida M, Stoward PJ (2008) Subcutaneous injection, from birth, of epigallocatechin-3-gallate, a component of green tea, limits the onset of muscular dystrophy in mdx mice: a quantitative histological, immunohistochemical and electrophysiological study. Histochem Cell Biol 129(4):489–501

    PubMed  CAS  Google Scholar 

  • Nguyen HX, Tidball JG (2003) Null mutation of gp91phox reduces muscle membrane lysis during muscle inflammation in mice. J Physiol 553(Pt 3):833–841

    PubMed  CAS  Google Scholar 

  • Pan Y, Chen C, Shen Y, Zhu CH, Wang G, Wang XC, Chen HQ, Zhu MS (2008) Curcumin alleviates dystrophic muscle pathology in mdx mice. Mol Cells 25(4):531–537

    PubMed  CAS  Google Scholar 

  • Partridge T (1991) Animal models of muscular dystrophy–what can they teach us? Neuropathol Appl Neurobiol 17(5):353–363

    PubMed  CAS  Google Scholar 

  • Pastoret C, Sebille A (1995) Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse. Muscle Nerve 18(10):1147–1154

    PubMed  CAS  Google Scholar 

  • Peters MF, Adams ME, Froehner SC (1997) Differential association of syntrophin pairs with the dystrophin complex. J Cell Biol 138(1):81–93

    PubMed  CAS  Google Scholar 

  • Peterson JM, Guttridge DC (2008) Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 27(5):375–387

    PubMed  CAS  Google Scholar 

  • Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11(3):263–272

    PubMed  CAS  Google Scholar 

  • Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102(6):2389–2397

    PubMed  CAS  Google Scholar 

  • Ragusa RJ, Chow CK, Porter JD (1997) Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul Disord 7(6–7):379–386

    PubMed  CAS  Google Scholar 

  • Rando TA (2001a) The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24(12):1575–1594

    PubMed  CAS  Google Scholar 

  • Rando TA (2001b) Role of nitric oxide in the pathogenesis of muscular dystrophies: a “two hit” hypothesis of the cause of muscle necrosis. Microsc Res Tech 55(4):223–235

    PubMed  CAS  Google Scholar 

  • Rando TA (2002) Oxidative stress and the pathogenesis of muscular dystrophies. Am J Phys Med Rehabil 81(11 Suppl):S175–S186

    PubMed  Google Scholar 

  • Rando TA, Disatnik MH, Yu Y, Franco A (1998) Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul Disord 8(1):14–21

    PubMed  CAS  Google Scholar 

  • Rodriguez MC, Tarnopolsky MA (2003) Patients with dystrophinopathy show evidence of increased oxidative stress. Free Radic Biol Med 34(9):1217–1220

    PubMed  CAS  Google Scholar 

  • Roelofs RI, de Arango GS, Law PK, Kinsman D, Buchanan DC, Park JH (1979) Treatment of Duchenne’s muscular dystrophy with penicillamine. Results of a double-blind trial. Arch Neurol 36(5):266–268

    PubMed  CAS  Google Scholar 

  • Sandri M, Carraro U (1999) Apoptosis of skeletal muscles during development and disease. Int J Biochem Cell Biol 31(12):1373–1390

    PubMed  CAS  Google Scholar 

  • Selsby JT (2011) Increased catalase expression improves muscle function in mdx mice. Exp Physiol 96(2):194–202

    PubMed  CAS  Google Scholar 

  • Shiao T, Fond A, Deng B, Wehling-Henricks M, Adams ME, Froehner SC, Tidball JG (2004) Defects in neuromuscular junction structure in dystrophic muscle are corrected by expression of a NOS transgene in dystrophin-deficient muscles, but not in muscles lacking alpha- and beta1-syntrophins. Hum Mol Genet 13(17):1873–1884

    PubMed  CAS  Google Scholar 

  • Skrabek RQ, Anderson JE (2001) Metabolic shifts and myocyte hypertrophy in deflazacort treatment of mdx mouse cardiomyopathy. Muscle Nerve 24(2):192–202

    PubMed  CAS  Google Scholar 

  • Spencer MJ, Tidball JG (2001) Do immune cells promote the pathology of dystrophin-deficient myopathies? Neuromuscul Disord 11(6–7):556–564

    PubMed  CAS  Google Scholar 

  • Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest 99(11):2745–2751

    PubMed  CAS  Google Scholar 

  • Spencer MJ, Marino MW, Winckler WM (2000) Altered pathological progression of diaphragm and quadriceps muscle in TNF-deficient, dystrophin-deficient mice. Neuromuscul Disord 10(8):612–619

    PubMed  CAS  Google Scholar 

  • Spencer MJ, Montecino-Rodriguez E, Dorshkind K, Tidball JG (2001) Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98(2):235–243

    PubMed  CAS  Google Scholar 

  • Spurney CF, Knoblach S, Pistilli EE, Nagaraju K, Martin GR, Hoffman EP (2008) Dystrophin-deficient cardiomyopathy in mouse: expression of Nox4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromuscul Disord 18(5):371–381

    PubMed  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352(6335):536–539

    PubMed  CAS  Google Scholar 

  • Stern LZ, Ringel SP, Ziter FA, Menander-Huber KB, Ionasescu V, Pellegrino RJ, Snyder RD (1982) Drug trial of superoxide dismutase in Duchenne’s muscular dystrophy. Arch Neurol 39(6):342–346

    PubMed  CAS  Google Scholar 

  • Stevens ED, Faulkner JA (2000) The capacity of mdx mouse diaphragm muscle to do oscillatory work. J Physiol 522(Pt 3):457–466

    PubMed  CAS  Google Scholar 

  • Sunada Y, Ohi H, Hase A, Hosono T, Arata S, Higuchi S, Matsumura K, Shimizu T (2001) Transgenic mice expressing mutant caveolin-3 show severe myopathy associated with increased nNOS activity. Hum Mol Genet 10(3):173–178

    PubMed  CAS  Google Scholar 

  • Sussman M (2002) Duchenne muscular dystrophy. J Am Acad Orthop Surg 10(2):138–151

    PubMed  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2004) Expression of a NOS transgene in dystrophin-deficient muscle reduces muscle membrane damage without increasing the expression of membrane-associated cytoskeletal proteins. Mol Genet Metab 82(4):312–320

    PubMed  CAS  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2007) The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol 102(4):1677–1686

    PubMed  CAS  Google Scholar 

  • Tkatchenko AV, Le Cam G, Léger JJ, Dechesne CA (2000) Large-scale analysis of differential gene expression in the hindlimb muscles and diaphragm of mdx mouse. Biochim Biophys Acta 1500 (1):17–30

    Google Scholar 

  • Ushio-Fukai M (2009) Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 11(6):1289–1299

    PubMed  CAS  Google Scholar 

  • Vasilaki A, Mansouri A, Remmen H, van der Meulen JH, Larkin L, Richardson AG, McArdle A, Faulkner JA, Jackson MJ (2006) Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell 5(2):109–117

    PubMed  CAS  Google Scholar 

  • Venema VJ, Ju H, Zou R, Venema RC (1997) Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272(45):28187–28190

    PubMed  CAS  Google Scholar 

  • Wakayama Y, Inoue M, Murahashi M, Shibuya S, Jimi T, Kojima H, Oniki H (1997) Ultrastructural localization of alpha 1-syntrophin and neuronal nitric oxide synthase in normal skeletal myofiber, and their relation to each other and to dystrophin. Acta Neuropathol 94(5):455–464

    PubMed  CAS  Google Scholar 

  • Walton JN, Nattrass FJ (1954) On the classification, natural history and treatment of the myopathies. Brain 77(2):169–231

    PubMed  CAS  Google Scholar 

  • Warren GL, Hayes DA, Lowe DA, Prior BM, Armstrong RB (1993) Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle. J Physiol 464:477–489

    PubMed  CAS  Google Scholar 

  • Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155(1):123–131

    PubMed  CAS  Google Scholar 

  • Wehling-Henricks M, Sokolow S, Lee JJ, Myung KH, Villalta SA, Tidball JG (2008) Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy. Hum Mol Genet 17(15):2280–2292

    PubMed  CAS  Google Scholar 

  • Whitehead NP, Streamer M, Lusambili LI, Sachs F, Allen DG (2006) Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice. Neuromuscul Disord 16(12):845–854

    PubMed  Google Scholar 

  • Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586(7):2003–2014

    PubMed  CAS  Google Scholar 

  • Whitehead NP, Yeung EW, Froehner SC, Allen DG (2010) Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS ONE 5(12):e15354

    PubMed  CAS  Google Scholar 

  • Williams IA, Allen DG (2007) The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 293(3):H1969–H1977

    PubMed  CAS  Google Scholar 

  • Williamson RA, Henry MD, Daniels KJ, Hrstka RF, Lee JC, Sunada Y, Ibraghimov-Beskrovnaya O, Campbell KP (1997) Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum Mol Genet 6(6):831–841

    PubMed  CAS  Google Scholar 

  • Yiu EM, Kornberg AJ (2008) Duchenne muscular dystrophy. Neurol India 56(3):236–247

    PubMed  Google Scholar 

  • Yoshida M, Hama H, Ishikawa-Sakurai M, Imamura M, Mizuno Y, Araishi K, Wakabayashi-Takai E, Noguchi S, Sasaoka T, Ozawa E (2000) Biochemical evidence for association of dystrobrevin with the sarcoglycan-sarcospan complex as a basis for understanding sarcoglycanopathy. Hum Mol Genet 9(7):1033–1040

    PubMed  CAS  Google Scholar 

  • Zhou L, Lu H (2010) Targeting fibrosis in Duchenne muscular dystrophy. J Neuropathol Exp Neurol 69(8):771–776

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Sydney and JL Huffines research grant (JHK, JML) and NIH (AG017768, AR054084) (LVT, JML).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Kwak, HB., Thompson, L.V. et al. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy. J Muscle Res Cell Motil 34, 1–13 (2013). https://doi.org/10.1007/s10974-012-9330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-012-9330-9

Keywords

Navigation