Skip to main content
Log in

Regulating the contraction of insect flight muscle

  • EMC2011 Special Issue
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca2+, which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca2+-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca2+ and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agianian B, Krzic U, Qiu F, Linke WA, Leonard K, Bullard B (2004) A troponin switch that regulates muscle contraction by stretch instead of calcium. EMBO J 23(4):772–779

    Article  PubMed  CAS  Google Scholar 

  • AL-Khayat HA, Hudson L, Reedy MK, Irving TC, Squire JM (2003) Myosin head configuration in relaxed insect flight muscle: x-ray modeled resting cross-bridges in a pre-powerstroke state are poised for actin binding. Biophys J 85(2):1063–1079

    Article  PubMed  CAS  Google Scholar 

  • Barbas JA, Galceran J, Krah-Jentgens I, de la Pompa JL, Canal I, Pongs O, Ferrus A (1991) Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila. Genes Dev 5(1):132–140

    Article  PubMed  CAS  Google Scholar 

  • Barbas JA, Galceran J, Torroja L, Prado A, Ferrus A (1993) Abnormal muscle development in the heldup3 mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol Cell Biol 13(3):1433–1439

    PubMed  CAS  Google Scholar 

  • Beall CJ, Fyrberg E (1991) Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol 114(5):941–951

    Article  PubMed  CAS  Google Scholar 

  • Benoist P, Mas JA, Marco R, Cervera M (1998) Differential muscle-type expression of the Drosophila troponin T gene. A 3-base pair microexon is involved in visceral and adult hypodermic muscle specification. J Biol Chem 273(13):7538–7546

    Article  PubMed  CAS  Google Scholar 

  • Boussouf SE, Agianian B, Bullard B, Geeves MA (2007) The regulation of myosin binding to actin filaments by Lethocerus troponin. J Mol Biol 373(3):587–598

    Article  PubMed  CAS  Google Scholar 

  • Bullard B, Leonard K, Larkins A, Butcher G, Karlik C, Fyrberg E (1988) Troponin of asynchronous flight muscle. J Mol Biol 204(3):621–637

    Article  PubMed  CAS  Google Scholar 

  • Burgess S, Walker M, Knight PJ, Sparrow J, Schmitz S, Offer G, Bullard B, Leonard K, Holt J, Trinick J (2004) Structural studies of arthrin: monoubiquitinated actin. J Mol Biol 341(5):1161–1173

    Article  PubMed  CAS  Google Scholar 

  • Cammarato A, Hatch V, Saide J, Craig R, Sparrow JC, Tobacman LS, Lehman W (2004) Drosophila muscle regulation characterized by electron microscopy and three-dimensional reconstruction of thin filament mutants. Biophys J 86(3):1618–1624

    Article  PubMed  CAS  Google Scholar 

  • Cammarato A, Craig R, Lehman W (2010) Electron microscopy and three-dimensional reconstruction of native thin filaments reveal species-specific differences in regulatory strand densities. Biochem Biophys Res Commun 391(1):193–197

    Article  PubMed  CAS  Google Scholar 

  • De Nicola G, Burkart C, Qiu F, Agianian B, Labeit S, Martin S, Bullard B, Pastore A (2007) The structure of Lethocerus troponin C: insights into the mechanism of stretch activation in muscles. Structure 15(7):813–824

    Article  PubMed  Google Scholar 

  • De Nicola GF, Martin S, Bullard B, Pastore A (2010) Solution structure of the Apo C-terminal domain of the Lethocerus F1 troponin C isoform. Biochemistry 49(8):1719–1726

    Article  PubMed  Google Scholar 

  • de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48(5):851–858

    Article  PubMed  Google Scholar 

  • Farman GP, Miller MS, Reedy MC, Soto-Adames FN, Vigoreaux JO, Maughan DW, Irving TC (2009) Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle. J Struct Biol 168(2):240–249

    Article  PubMed  CAS  Google Scholar 

  • Fyrberg E, Fyrberg CC, Beall C, Saville DL (1990) Drosophila melanogaster troponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. J Mol Biol 216(3):657–675

    Article  PubMed  CAS  Google Scholar 

  • Fyrberg C, Parker H, Hutchison B, Fyrberg E (1994) Drosophila melanogaster genes encoding three troponin-C isoforms and a calmodulin-related protein. Biochem Genet 32(3–4):119–135

    Article  PubMed  CAS  Google Scholar 

  • Gagné SM, Tsuda S, Li MX, Smillie LB, Sykes BD (1995) Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat Struct Biol 2(9):784–789

    Article  PubMed  Google Scholar 

  • Gagné SM, Li MX, McKay RT, Sykes BD (1998) The NMR angle on troponin C. Biochem Cell Biol 76(2–3):302–312

    Article  PubMed  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80(2):853–924

    PubMed  CAS  Google Scholar 

  • Granzier HL, Wang K (1993) Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal. J Gen Physiol 101(2):235–270

    Article  PubMed  CAS  Google Scholar 

  • Greaser ML, Gergely J (1971) Reconstitution of troponin activity from three protein components. J Biol Chem 246(13):4226–4233

    PubMed  CAS  Google Scholar 

  • Greenfield NJ, Huang YJ, Swapna GV, Bhattacharya A, Rapp B, Singh A, Montelione GT, Hitchcock-DeGregori SE (2006) Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol 364(1):80–96

    Article  PubMed  CAS  Google Scholar 

  • Hanke PD, Storti RV (1988) The Drosophila melanogaster tropomyosin II gene produces multiple proteins by use of alternative tissue-specific promoters and alternative splicing. Mol Cell Biol 8(9):3591–3602

    PubMed  CAS  Google Scholar 

  • Herranz R, Diaz-Castillo C, Nguyen TP, Lovato TL, Cripps RM, Marco R (2004) Expression patterns of the whole troponin C gene repertoire during Drosophila development. Gene Expr Patterns 4(2):183–190

    Article  PubMed  CAS  Google Scholar 

  • Herranz R, Mateos J, Marco R (2005a) Diversification and independent evolution of troponin C genes in insects. J Mol Evol 60(1):31–44

    Article  PubMed  CAS  Google Scholar 

  • Herranz R, Mateos J, Mas JA, Garcia-Zaragoza E, Cervera M, Marco R (2005b) The coevolution of insect muscle TpnT and TpnI gene isoforms. Mol Biol Evol 22(11):2231–2242

    Article  PubMed  CAS  Google Scholar 

  • Josephson RK, Malamud JG, Stokes DR (2000) Asynchronous muscle: a primer. J Exp Biol 203(Pt 18):2713–2722

    PubMed  CAS  Google Scholar 

  • Karlik CC, Fyrberg EA (1986) Two Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol Cell Biol 6(6):1965–1973

    PubMed  CAS  Google Scholar 

  • Kretsinger RH (1976) Evolution and function of calcium-binding proteins. Int Rev Cytol 46:323–393

    Article  PubMed  CAS  Google Scholar 

  • Krzic U, Rybin V, Leonard KR, Linke WA, Bullard B (2010) Regulation of oscillatory contraction in insect flight muscle by troponin. J Mol Biol 397(1):110–118

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Szent-Györgyi A (1975) Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol 66:1–30

    Article  PubMed  CAS  Google Scholar 

  • Lehman W, Craig R, Vibert P (1994) Ca2+ induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368(6466):65–67

    Article  PubMed  CAS  Google Scholar 

  • Li MX, Spyracopoulos L, Sykes BD (1999) Binding of cardiac troponin-I147–163 induces a structural opening in human cardiac troponin-C. Biochemistry 38(26):8289–8298

    Article  PubMed  CAS  Google Scholar 

  • Li MX, Spyracopoulos L, Beier N, Putkey JA, Sykes BD (2000) Interaction of cardiac troponin C with Ca(2+) sensitizer EMD 57033 and cardiac troponin I inhibitory peptide. Biochemistry 39(30):8782–8790

    Article  PubMed  CAS  Google Scholar 

  • Linari M, Reedy MK, Reedy MC, Lombardi V, Piazzesi G (2004) Ca-activation and stretch-activation in insect flight muscle. Biophys J 87(2):1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Loxdale HD, Tregear RT (1985) Dissociation between mechanical performance and the cost of isometric tension maintenance in Lethocerus flight muscle. J Muscle Res Cell Motil 6(2):163–175

    Article  PubMed  CAS  Google Scholar 

  • Marden JH, Fitzhugh GH, Wolf MR, Arnold KD, Rowan B (1999) Alternative splicing, muscle calcium sensitivity, and the modulation of dragonfly flight performance. Proc Natl Acad Sci USA 96(26):15304–15309

    Article  PubMed  CAS  Google Scholar 

  • Martin SR, Avella G, Adrover M, de Nicola GF, Bullard B, Pastore A (2011) Binding properties of the calcium-activated F2 isoform of Lethocerus troponin C. Biochemistry 50(11):1839–1847

    PubMed  CAS  Google Scholar 

  • Mateos J, Herranz R, Domingo A, Sparrow J, Marco R (2006) The structural role of high molecular weight tropomyosins in dipteran indirect flight muscle and the effect of phosphorylation. J Muscle Res Cell Motil 27(3–4):189–201

    Article  PubMed  CAS  Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65(2):693–701

    Article  PubMed  CAS  Google Scholar 

  • Mercier P, Li MX, Sykes BD (2000) Role of the structural domain of troponin C in muscle regulation: NMR studies of Ca2+ binding and subsequent interactions with regions 1–40 and 96–115 of troponin I. Biochemistry 39(11):2902–2911

    Article  PubMed  CAS  Google Scholar 

  • Mercier P, Ferguson RE, Irving M, Corrie JE, Trentham DR, Sykes BD (2003) NMR structure of a bifunctional rhodamine labeled N-domain of troponin C complexed with the regulatory “switch” peptide from troponin I: implications for in situ fluorescence studies in muscle fibers. Biochemistry 42(15):4333–4348

    Article  PubMed  CAS  Google Scholar 

  • Miller MS, Farman GP, Braddock JM, Soto-Adames FN, Irving TC, Vigoreaux JO, Maughan DW (2011) Regulatory light chain phosphorylation and N-terminal extension increase cross-bridge binding and power output in Drosophila at in vivo myofilament lattice spacing. Biophys J 100(7):1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Nongthomba U, Cummins M, Clark S, Vigoreaux JO, Sparrow JC (2003) Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 164(1):209–222

    PubMed  CAS  Google Scholar 

  • Nongthomba U, Clark S, Cummins M, Ansari M, Stark M, Sparrow JC (2004) Troponin I is required for myofibrillogenesis and sarcomere formation in Drosophila flight muscle. J Cell Sci 117(Pt 9):1795–1805

    Article  PubMed  CAS  Google Scholar 

  • Nongthomba U, Ansari M, Thimmaiya D, Stark M, Sparrow J (2007) Aberrant splicing of an alternative exon in the Drosophila troponin-T gene affects flight muscle development. Genetics 177(1):295–306

    Article  PubMed  CAS  Google Scholar 

  • Peckham M, Cripps RM, White DCS et al (1992) Mechanics and protein content of insect flight muscles. J Exp Biol 168:57–76

    CAS  Google Scholar 

  • Perz-Edwards RJ, Irving TC, Baumann BA, Gore D, Hutchinson DC, Krzic U, Porter RL, Ward AB, Reedy MK (2011) X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc Natl Acad Sci USA 108(1):120–125

    Article  PubMed  CAS  Google Scholar 

  • Pringle JW (1978) Stretch activation of muscle: function and mechanism. Proc R Soc Lond B 201:107–130

    Article  PubMed  CAS  Google Scholar 

  • Pringle JW, Tregear RT (1969) Mechanical properties of insect fibrillar muscle at large amplitudes of oscillation. Proc R Soc Lond B 174(34):33–50

    Article  PubMed  CAS  Google Scholar 

  • Qiu F, Lakey A, Agianian B, Hutchings A, Butcher GW, Labeit S, Leonard K, Bullard B (2003) Troponin C in different insect muscle types: identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect. Biochem J 371(Pt 3):811–821

    Article  PubMed  CAS  Google Scholar 

  • Reedy MK, Reedy MC (1985) Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J Mol Biol 185:145–176

    Article  PubMed  CAS  Google Scholar 

  • Reedy MC, Reedy MK, Leonard KR, Bullard B (1994) Gold/Fab immuno electron microscopy localization of troponin H and troponin T in Lethocerus flight muscle. J Mol Biol 239(1):52–67

    Article  PubMed  CAS  Google Scholar 

  • Ruiz T, Bullard B, Lepault J (1998) Effects of calcium and nucleotides on the structure of insect flight muscle thin filaments. J Muscle Res Cell Motil 19(4):353–364

    Article  PubMed  CAS  Google Scholar 

  • Schmitz H, Lucaveche C, Reedy MK, Taylor KA (1994) Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration. Biophys J 67(4):1620–1633

    Article  PubMed  CAS  Google Scholar 

  • Stelzer JE, Moss RL (2006) Contributions of stretch activation to length-dependent contraction in murine myocardium. J Gen Physiol 128(4):461–471

    Article  PubMed  CAS  Google Scholar 

  • Sun YB, Irving M (2010) The molecular basis of the steep force-calcium relation in heart muscle. J Mol Cell Cardiol 48(5):859–865

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maeda Y (2003) Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 424(6944):35–41

    Article  PubMed  CAS  Google Scholar 

  • Taylor KA, Schmitz H, Reedy MC, Goldman YE, Franzini-Armstrong C, Sasaki H, Tregear RT, Poole K, Lucaveche C, Edwards RJ, Chen LF, Winkler H, Reedy MK (1999) Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 99(4):421–431

    Article  PubMed  CAS  Google Scholar 

  • Thorson J, White DC (1983) Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit striated muscle. J Physiol 343:59–84

    PubMed  CAS  Google Scholar 

  • Tohtong R, Yamashita H, Graham M, Haeberle J, Simcox A, Maughan D (1995) Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature 374(6523):650–653

    Article  PubMed  CAS  Google Scholar 

  • Tregear RT, Edwards RJ, Irving TC, Poole KJ, Reedy MC, Schmitz H, Towns-Andrews E, Reedy MK (1998) X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys J 74(3):1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Tregear RT, Reedy MC, Goldman YE, Taylor KA, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Reedy MK (2004) Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys J 86(5):3009–3019

    Article  PubMed  CAS  Google Scholar 

  • Tripet B, De Crescenzo G, Grothe S, O’Connor-McCourt M, Hodges RS (2003) Kinetic analysis of the interactions between troponin C (TnC) and troponin I (TnI) binding peptides: evidence for separate binding sites for the ‘structural’ N-terminus and the ‘regulatory’ C-terminus of TnI on TnC. J Mol Recognit 16(1):37–53

    Article  PubMed  CAS  Google Scholar 

  • Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maeda Y (1998) Crystal structure of troponin C in complex with troponin I fragment at 2.3-Å resolution. Proc Natl Acad Sci USA 95(9):4847–4852

    Article  PubMed  CAS  Google Scholar 

  • Vemuri R, Lankford EB, Poetter K, Hassanzadeh S, Takeda K, Yu ZX, Ferrans VJ, Epstein ND (1999) The stretch-activation response may be critical to the proper functioning of the mammalian heart. Proc Natl Acad Sci USA 96(3):1048–1053

    Article  PubMed  CAS  Google Scholar 

  • Vikhorev PG, Vikhoreva NN, Cammarato A, Sparrow JC (2010) In vitro motility of native thin filaments from Drosophila indirect flight muscles reveals that the held-up 2 TnI mutation affects calcium activation. J Muscle Res Cell Motil 31(3):171–179

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ (2005) Ca(2+)-regulated structural changes in troponin. Proc Natl Acad Sci USA 102(14):5038–5043

    Article  PubMed  CAS  Google Scholar 

  • Wray JS (1979) Filament geometry and the activation of insect flight muscle. Nature 280:325–326

    Article  Google Scholar 

  • Wu S, Liu J, Reedy MC, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA (2010) Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions. PLoS One 5(9):e12643

    Article  Google Scholar 

  • Yap KL, Ames JB, Swindells MB, Ikura M (1999) Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37(3):499–507

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Sun Y, Zhao FQ, Yu J, Craig R, Hu S (2009) Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms. BMC Genomics 10:117

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr M. K. Reedy for many suggestions on improving the manuscript, and to Dr K. R. Leonard and Dr S. Hitchcock-DeGregori for helpful discussions. The work was partly funded by an EU 6th Framework grant, MYORES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda Bullard.

Additional information

This is a contribution for EMC 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullard, B., Pastore, A. Regulating the contraction of insect flight muscle. J Muscle Res Cell Motil 32, 303–313 (2011). https://doi.org/10.1007/s10974-011-9278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9278-1

Keywords

Navigation