Skip to main content
Log in

cGMP reduces the sarcoplasmic reticulum Ca2+ loading in airway smooth muscle cells: a putative mechanism in the regulation of Ca2+ by cGMP

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Ca2+ and cGMP have opposite roles in many physiological processes likely due to a complex negative feedback regulation between them. Examples of opposite functions induced by Ca2+ and cGMP are smooth muscle contraction and relaxation, respectively. A main Ca2+ storage involved in contraction is sarcoplasmic reticulum (SR); nevertheless, the role of cGMP in the regulation of SR-Ca2+ has not been completely understood. To evaluate this role, intracellular Ca2+ concentration ([Ca2+]i) was determinated by a ratiometric method in isolated myocytes from bovine trachea incubated with Fura-2/AM. The release of Ca2+ from SR induced by caffeine was transient, whereas caffeine withdrawal was followed by a [Ca2+]i undershoot. Caffeine-induced Ca2+ transient peak and [Ca2+]i undershoot after caffeine were reproducible in the same cell. Dibutyryl cGMP (db-cGMP) blocked the [Ca2+]i undershoot and reduced the subsequent caffeine peak (SR-Ca2+ loading). Both, the opening of SR channels with ryanodine (10 μM) and the blockade of SR-Ca2+ ATPase with cyclopiazonic acid inhibited the [Ca2+]i undershoot as well as the SR-Ca2+ loading. The addition of db-cGMP to ryanodine (10 μM) incubated cells partially restored the SR-Ca2+ loading. Cyclic GMP enhanced [Ca2+]i undershoot induced by the blockade of ryanodine channels with 50 μM ryanodine. In conclusion, the reduction of SR-Ca2+ content in airway smooth muscle induced by cGMP can be explained by the combination of SR-Ca2+ loading and the simultaneous release of SR-Ca2+. The reduction of SR-Ca2+ content induced by cGMP might be a putative mechanism limiting releasable Ca2+ in response to a particular stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 91(16):7583–7587

    Article  PubMed  CAS  Google Scholar 

  • Bazan-Perkins B, Sanchez-Guerrero E, Carbajal V, Barajas-Lopez C, Montano LM (2000) Sarcoplasmic reticulum Ca2+ depletion by caffeine and changes of [Ca2+](i) during refilling in bovine airway smooth muscle cells. Arch Med Res 31(6):558–563

    Article  PubMed  CAS  Google Scholar 

  • Bazan-Perkins B, Flores-Soto E, Barajas-Lopez C, Montano LM (2003) Role of sarcoplasmic reticulum Ca2+ content in Ca2+ entry of bovine airway smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 368(4):277–283

    Article  PubMed  CAS  Google Scholar 

  • Bazan-Perkins B, Sanchez-Guerrero E, Campos MG (2009) Capacitative Ca2+ entry during Ca2+ undershoot in bovine airway smooth muscle. Cell Physiol Biochem 24:161–166

    Article  PubMed  CAS  Google Scholar 

  • Blayney LM, Gapper PW, Newby AC (1991) Inhibition of a receptor-operated calcium channel in pig aortic microsomes by cyclic GMP-dependent protein kinase. Biochem J 273(Pt 3):803–806

    PubMed  CAS  Google Scholar 

  • Cheek TR, Moreton RB, Berridge MJ, Stauderman KA, Murawsky MM, Bootman MD (1993) Quantal Ca2+ release from caffeine-sensitive stores in adrenal chromaffin cells. J Biol Chem 268(36):27076–270783

    PubMed  CAS  Google Scholar 

  • Cheek TR, Berridge MJ, Moreton RB, Stauderman KA, Murawsky MM, Bootman MD (1994) Quantal Ca2+ mobilization by ryanodine receptors is due to all-or-none release from functionally discrete intracellular stores. Biochem J 301(Pt 3):879–883

    PubMed  CAS  Google Scholar 

  • Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM (1991) Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol 40(6):923–931

    PubMed  CAS  Google Scholar 

  • Cortijo J, Sanz CM, Villagrasa V, Anton M, Morcillo EJ (1993) Pharmacological modulation of the spasmogenic response to methylxanthines in guinea-pig trachea. Res Commun Chem Pathol Pharmacol 79(1):125–128

    PubMed  CAS  Google Scholar 

  • Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539(Pt 1):77–91

    Article  PubMed  CAS  Google Scholar 

  • Furukawa K, Ohshima N, Tawada-Iwata Y, Shigekawa M (1991) Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture. J Biol Chem 266(19):12337–12341

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  • Hampl V, Huang JM, Weir EK, Archer SL (1995) Activation of the cGMP-dependent protein kinase mimics the stimulatory effect of nitric oxide and cGMP on calcium-gated potassium channels. Physiol Res 44(1):39–44

    PubMed  CAS  Google Scholar 

  • Helli PB, Pertens E, Janssen LJ (2005) Cyclopiazonic acid activates a Ca2+-permeable, nonselective cation conductance in porcine and bovine tracheal smooth muscle. J Appl Physiol 99(5):1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Janssen LJ, Killian K (2006) Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res 7:123

    Article  PubMed  Google Scholar 

  • Janssen LJ, Betti PA, Netherton SJ, Walters DK (1999) Superficial buffer barrier and preferentially directed release of Ca2+ in canine airway smooth muscle. Am J Physiol 276(5 Pt 1):L744–L753

    PubMed  CAS  Google Scholar 

  • Kajita J, Yamaguchi H (1993) Calcium mobilization by muscarinic cholinergic stimulation in bovine single airway smooth muscle. Am J Physiol 264(5 Pt 1):L496–L503

    PubMed  CAS  Google Scholar 

  • Kitao T, Takuma K, Kawasaki T, Inoue Y, Ikehara A, Nashida T, Ago Y, Matsuda T (2010) The Na+/Ca2+ exchanger-mediated Ca2+ influx triggers nitric oxide-induced cytotoxicity in cultured astrocytes. Neurochem Int 57(1):58–66

    Article  PubMed  CAS  Google Scholar 

  • Knox AJ, Tattersfield AE (1995) Airway smooth muscle relaxation. Thorax 50(8):894–901

    Article  PubMed  CAS  Google Scholar 

  • Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. Faseb J 7(2):328–338

    PubMed  CAS  Google Scholar 

  • Liu H, Xiong Z, Sperelakis N (1997) Cyclic nucleotides regulate the activity of L-type calcium channels in smooth muscle cells from rat portal vein. J Mol Cell Cardiol 29(5):1411–1421

    Article  PubMed  CAS  Google Scholar 

  • Lu YF, Hawkins RD (2002) Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 88(3):1270–1278

    PubMed  CAS  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52(3):375–414

    PubMed  CAS  Google Scholar 

  • Montano LM, Bazan-Perkins B (2005) Resting calcium influx in airway smooth muscle. Can J Physiol Pharmacol 83(8–9):717–723

    Article  PubMed  CAS  Google Scholar 

  • Orkand RK, Thomas RC (1995) Effects of low doses of caffeine on [Ca2+]i in voltage-clamped snail (Helix aspersa) neurones. J Physiol 489(Pt 1):19–28

    PubMed  CAS  Google Scholar 

  • Rousseau E, Smith JS, Meissner G (1987) Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253(3 Pt 1):C364–C368

    PubMed  CAS  Google Scholar 

  • Ruiz-Velasco V, Zhong J, Hume JR, Keef KD (1998) Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein. Circ Res 82(5):557–565

    PubMed  CAS  Google Scholar 

  • Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264(30):17816–17823

    PubMed  CAS  Google Scholar 

  • Sims SM, Jiao Y, Zheng ZG (1996) Intracellular calcium stores in isolated tracheal smooth muscle cells. Am J Physiol 271(2 Pt 1):L300–L309

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83(4):1325–1358

    PubMed  CAS  Google Scholar 

  • Stratton RC, Squires PE, Green AK (2010) 17Beta-estradiol elevates cGMP and, via plasma membrane recruitment of protein kinase GI alpha, stimulates Ca2+ efflux from rat hepatocytes. J Biol Chem 285(35):27201–27212

    Article  PubMed  CAS  Google Scholar 

  • Tritsaris K, Looms DK, Nauntofte B, Dissing S (2000) Nitric oxide synthesis causes inositol phosphate production and Ca2+ release in rat parotid acinar cells. Pflugers Arch 440(2):223–228

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, Kajita J, Madison JM (1995) Isoproterenol increases peripheral [Ca2+]i and decreases inner [Ca2+]i in single airway smooth muscle cells. Am J Physiol 268(3 Pt 1):C771–C779

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Toyosato A, Islam MO, Koga T, Fujita S, Imai S (1999) Stimulation of plasma membrane Ca2+-pump ATPase of vascular smooth muscle by cGMP-dependent protein kinase: functional reconstitution with purified proteins. Mol Cell Biochem 190(1–2):157–167

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Bazán-Perkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazán-Perkins, B. cGMP reduces the sarcoplasmic reticulum Ca2+ loading in airway smooth muscle cells: a putative mechanism in the regulation of Ca2+ by cGMP. J Muscle Res Cell Motil 32, 375–382 (2012). https://doi.org/10.1007/s10974-011-9266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9266-5

Keywords

Navigation