Skip to main content
Log in

TGF-β isoforms inhibit IGF-1-induced migration and regulate terminal differentiation in a cell-specific manner

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Following muscle injury, the damaged tissue and influx of inflammatory cells stimulate the secretion of growth factors and cytokines to initiate repair processes. This release of chemotactic signaling factors activates resident precursor cells and stimulates their mobilization and migration to the site of injury where terminal differentiation can occur. The three transforming growth factor-β (TGF-β) isoforms, and insulin-like growth factor-1 (IGF-1) are among the known regulatory factors released following muscle damage. We investigated the effect of recombinant active TGF-β1, -β2, -β3 and IGF-1 on C2C12 skeletal muscle satellite cell and P19 embryonal carcinoma cell terminal differentiation and migration. C2C12 myoblast fusion as well as P19 embryoid body formation and myogenic differentiation was assessed following 72 h TGF-β treatment (5 ng/ml), whereas the effect of the TGF-β isoforms on migration was determined following 7 h incubation. Our results showed that TGF-β decreases C2C12 myoblast fusion in an isoform-independent manner, whereas in the P19 cell lineage, results demonstrate that TGF-β1 specifically and significantly increased P19 embryoid body formation, but not expression of Connexin-43 or Myosin Heavy Chain. IGF-1 significantly increased migration compared to TGF-β isoforms, which, on their own, had no significant effect on the mobilization of either C2C12 or P19 cells. TGF-β isoforms decreased IGF-1-induced migration of both cell lineages. By distinguishing the factors involved in, and the molecular signals required for, myoblast recruitment during repair processes, strategies can be developed towards improved cell-mediated therapies for muscle injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexakis C, Partridge T et al (2007) Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol 293:C661–C669

    Article  CAS  PubMed  Google Scholar 

  • Al-Shanti N, Stewart CE (2008) PD98059 enhances C2 myoblast differentiation through p38 MAPK activation: a novel role for PD98059. J Endocrinol 198:243–252

    Article  CAS  PubMed  Google Scholar 

  • Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657–666

    Article  CAS  PubMed  Google Scholar 

  • Avila T, Andrade A et al (2006) Transforming growth factor-beta1 and bone morphogenetic protein-2 downregulate CaV3.1 channel expression in mouse C2C12 myoblasts. J Cell Physiol 209:448–456

    Article  CAS  PubMed  Google Scholar 

  • Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208:505–515

    Article  CAS  PubMed  Google Scholar 

  • Blau HM, Pavlath GK et al (1985) Plasticity of the differentiated state. Science 230:758–766

    Article  CAS  PubMed  Google Scholar 

  • Boudoulas KD, Hatzopoulos AK (2009) Cardiac repair and regeneration: the Rubik’s cube of cell therapy for heart disease. Dis Model Mech 2:344–358

    Article  CAS  PubMed  Google Scholar 

  • Cabane C, Englaro W et al (2003) Regulation of C2C12 myogenic terminal differentiation by MKK3/p38 alpha pathway. Am J Physiol Cell Physiol 284:C658–C666

    CAS  PubMed  Google Scholar 

  • Collins JM, Russell B (2009) Stem cell therapy for cardiac repair. J Cardiovasc Nurs 24:93–97

    PubMed  Google Scholar 

  • Cusella-De Angelis MG, Molinari S et al (1994) Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development 120:925–933

    CAS  PubMed  Google Scholar 

  • Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673

    Article  CAS  PubMed  Google Scholar 

  • Filvaroff EH, Ebner R et al (1994) Inhibition of myogenic differentiation in myoblasts expressing a truncated type II TGF-beta receptor. Development 120:1085–1095

    CAS  PubMed  Google Scholar 

  • Habara-Ohkubo A (1996) Differentiation of beating cardiac muscle cells from a derivative of P19 embryonal carcinoma cells. Cell Struct Funct 21:101–110

    Article  CAS  PubMed  Google Scholar 

  • Jones NC, Tyner KJ et al (2005) The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116

    Article  CAS  PubMed  Google Scholar 

  • Kottler UB, Junemann AG et al (2005) Comparative effects of TGF-beta 1 and TGF-beta 2 on extracellular matrix production, proliferation, migration, and collagen contraction of human Tenon’s capsule fibroblasts in pseudoexfoliation and primary open-angle glaucoma. Exp Eye Res 80:121–134

    Article  CAS  PubMed  Google Scholar 

  • Lafyatis R, Lechleider R et al (1991) Secretion and transcriptional regulation of transforming growth factor-beta 3 during myogenesis. Mol Cell Biol 11:3795–3803

    CAS  PubMed  Google Scholar 

  • Le Grand F, Rudnicki M (2007) Satellite and stem cells in muscle growth and repair. Development 134:3953–3957

    Article  CAS  PubMed  Google Scholar 

  • Liapi C, Raynaud F et al (1990) High chemotactic response to platelet-derived growth factor of a teratocarcinoma differentiated mesodermal cell line. In Vitro Cell Dev Biol 26:388–392

    Article  CAS  PubMed  Google Scholar 

  • Lim JY, Kim WH et al (2007) Involvement of TGF-beta1 signaling in cardiomyocyte differentiation from P19CL6 cells. Mol Cells 24:431–436

    CAS  PubMed  Google Scholar 

  • McBurney MW (1993) P19 embryonal carcinoma cells. Int J Dev Biol 37:135–140

    CAS  PubMed  Google Scholar 

  • McKarns SC, Letterio JJ, Kaminski NE (2003) Concentration-dependent bifunctional effect of TGF-beta 1 on immunoglobulin production: a role for Smad3 in IgA production in vitro. Int Immunopharmacol 3:1761–1774

    Article  CAS  PubMed  Google Scholar 

  • McLennan IS, Koishi K (2002) The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells. Int J Dev Biol 46:559–567

    CAS  PubMed  Google Scholar 

  • Mejia-Luna L, Avila G (2004) Ca2+ channel regulation by transforming growth factor-beta 1 and bone morphogenetic protein-2 in developing mice myotubes. J Physiol 559:41–54

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PO, Pavlath GK (2001) A muscle precursor cell-dependent pathway contributes to muscle growth after atrophy. Am J Physiol Cell Physiol 281:C1706–C1715

    CAS  PubMed  Google Scholar 

  • Niesler CU (2004) Old dogmas and new hearts: a role for adult stem cells in cardiac repair? Cardiovasc J S Afr 15:184–189 discussion 189

    PubMed  Google Scholar 

  • Niesler CU, Ferguson MWJ (2001) TGF-beta superfamily cytokines in wound healing. In: SN B, Basel WS (eds) TGF-ß and related cytokines in inflammation. Birkhauser Verlag AG, Basel, pp 173–198

    Google Scholar 

  • Nishiyama T, Kii I et al (2004) Inactivation of Rho/ROCK signaling is crucial for the nuclear accumulation of FKHR and myoblast fusion. J Biol Chem 279:47311–47319

    Article  CAS  PubMed  Google Scholar 

  • Olson EN, Sternberg E et al (1986) Regulation of myogenic differentiation by type beta transforming growth factor. J Cell Biol 103:1799–1805

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Chen J (2005) Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation. J Biol Chem 280:32009–32017

    Article  CAS  PubMed  Google Scholar 

  • Qyang Y, Senyei G (2009) Regeneration of a heart cell. Yale J Biol Med 82:117–119

    CAS  PubMed  Google Scholar 

  • Robertson TA, Maley MA et al (1993) The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp Cell Res 207:321–331

    Article  CAS  PubMed  Google Scholar 

  • Rousse S, Lallmand F et al (2001) Transforming growth factor-b inhibition of insulin-like growth factor-binding protein-5 synthesis in skeletal muscle cells involves a c-Jun N-terminal kinase-dependent pathway. J Cell Biol 276:46961–46967

    CAS  Google Scholar 

  • Schabort EJ, van der Merwe M et al (2009) TGF-beta’s delay skeletal muscle progenitor cell differentiation in an isoform-independent manner. Exp Cell Res 315:373–384

    Article  CAS  PubMed  Google Scholar 

  • Singla DK, Sun B (2005) Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun 332:135–141

    Article  PubMed  Google Scholar 

  • Skerjanc IS (1999) Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med 9:139–143

    Article  CAS  PubMed  Google Scholar 

  • Smith SC, Reuhl KR et al (1987) The role of aggregation in embryonal carcinoma cell differentiation. J Cell Physiol 131:74–84

    Article  CAS  PubMed  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the South African National Research Foundation, South African Medical Research Council, the University of Stellenbosch and the University of KwaZulu-Natal. The A4-1025 Myosin Heavy Chain antibody was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola U. Niesler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schabort, E.J., van der Merwe, M. & Niesler, C.U. TGF-β isoforms inhibit IGF-1-induced migration and regulate terminal differentiation in a cell-specific manner. J Muscle Res Cell Motil 31, 359–367 (2011). https://doi.org/10.1007/s10974-011-9241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9241-1

Keywords

Navigation