Skip to main content
Log in

Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

We studied the biomechanical properties of the sarcolemma and its links through costameres to the contractile apparatus in single mammalian myofibers of Extensor digitorum longus muscles isolated from wild (WT) and dystrophin-null (mdx) mice. Suction pressures (P) applied through a pipette to the sarcolemma generated a bleb, the height of which increased with increasing P. Larger increases in P broke the connections between the sarcolemma and myofibrils and eventually caused the sarcolemma to burst. We used the values of P at which these changes occurred to estimate the tensions and stiffness of the system and its individual elements. Tensions of the whole system and the sarcolemma, as well as the maximal tension sustained by the costameres, were all significantly lower (1.8–3.3 fold) in muscles of mdx mice compared to WT. Values of P at which separation and bursting occurred, as well as the stiffness of the whole system and of the isolated sarcolemma, were ~2-fold lower in mdx than in WT. Our results indicate that the absence of dystrophin reduces muscle stiffness, increases sarcolemmal deformability, and compromises the mechanical stability of costameres and their connections to nearby myofibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Anastasi G, Cutroneo G, Santoro G, Arco A, Rizzo G, Bramanti P, Rinaldi C, Sidoti A, Amato A, Favaloro A (2008) Costameric proteins in human skeletal muscle during muscular inactivity. J Anat 213(3):284–295

    Article  CAS  PubMed  Google Scholar 

  • Ayalon G, Davis J, Scotland P, Bennett V (2008) An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135(7):1189–1200

    Article  CAS  PubMed  Google Scholar 

  • Barton E (2006) Impact of Sarcoglycan complex on mechanical signal transduction in murine skeletal muscle. Am J Physiol Cell Physiol 290(2):C411–C419

    Article  CAS  PubMed  Google Scholar 

  • Beedle A, Nienaber P, Campbell K (2007) Fukutin-related protein associates with the sarcolemmal dystrophin–glycoprotein complex. J Biol Chem 282(23):16713–16717

    Article  CAS  PubMed  Google Scholar 

  • Bhosle R, Michele D, Campbell K, Li Z, Robson R (2006) Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun 346(3):768–777

    Article  CAS  PubMed  Google Scholar 

  • Blaauw B, Mammucari C, Toniolo L, Agatea L, Abraham R, Sandri M, Reggiani C, Schaffino S (2008) Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Hum Mol Genet 17(23):3686–3696

    Article  CAS  PubMed  Google Scholar 

  • Blaauw B, Agate L, Toniolo L, Canato M, Quarta M, Dyar K, Danieli-Betto D, Betto R, Schiaffino S, Reggiani C (2010) Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. J Appl Physiol 108(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Bloch R, Gonzalez-Serratos H (2003) Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev 31(2):73–78

    Article  PubMed  Google Scholar 

  • Bloch R, Capetanaki Y, O’Neill A, Reed P, Williams MW, Resneck W, Porter N, Ursitti J (2002) Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin Orthop Relat Res 403S:S203–S210

    Article  Google Scholar 

  • Boal D (2006) Mechanics of the cell. Cambridge University Press, Cambridge

    Google Scholar 

  • Bobet J, Mooney RF, Gordon T (1998) Force and stiffness of old dystrophic (mdx) mouse skeletal muscles. Muscle Nerve 21(4):536–539

    Article  CAS  PubMed  Google Scholar 

  • Brenman J, Chao D, Xia H, Aldape K, Bredt D (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscles sarcolemma in Duchenne muscular dystrophy. Cell 82(5):743–752

    Article  CAS  PubMed  Google Scholar 

  • Bull H (1964) An introduction to physical biochemistry. Davis Co, Philadelphia

    Google Scholar 

  • Campbell K, Stull T (2003) Skeletal muscle basement membrane–sarcolemma–cytoskeleton interaction minireview series. J Biol Chem 278(15):12599–12600

    Article  CAS  PubMed  Google Scholar 

  • Caputo C, Bolaños P (1994) Fluo-3 signals associated with potassium contractures in single amphibian muscle fibers. J Physiol 481:119–128

    CAS  PubMed  Google Scholar 

  • Claffin D, Brooks S (2008) Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy. Am J Physiol Cell Physiol 294:C651–C658

    Article  Google Scholar 

  • Dmytrenko G, Pumplin D, Bloch R (1993) Dystrophin in membrane skeletal network: localization and comparison to other proteins. J Neurosci 13(2):547–558

    CAS  PubMed  Google Scholar 

  • Dulhunty AF, Franzini-Armstrong C (1975) The relative contribution of the folds and caveolae to the surface membrane of frog skeletal muscle fibers at different sarcomere length. J Physiol 250:513–539

    CAS  PubMed  Google Scholar 

  • Dull RW (1941) Mathematics for engineers. McGraw-Hill Book Company, New York

    Google Scholar 

  • Ehmer S, Herrmann H, Bittner R, Voit T (1997) Spatial distribution of beta-spectrin in normal and dystrophic human skeletal muscle. Acta Neuropathol 94(3):240–246

    Article  CAS  PubMed  Google Scholar 

  • Ervasti J (2003) Costameres: the Achilles’ heel of herculean muscle. J Biol Chem 278(16):13591–13594

    Article  CAS  PubMed  Google Scholar 

  • Ervasti J (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochem Biophys Acta 1772(2):108–117

    CAS  PubMed  Google Scholar 

  • Ervasti J, Campbell K (1991) Membrane organization of the dystrophin–glycoprotein complex. Cell 66(6):1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Ervasti J, Campbell K (1993) A role for the dystrophin–glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Hochmuth M (1976) Membrane viscoelasticity. Biophys J 16(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipette aspiration. Biophys J 56:151–160

    Article  CAS  PubMed  Google Scholar 

  • Fonbrune P (1949) Technique de Micromanipulation. Massonn et Cie, Paris

    Google Scholar 

  • Garcia-Pelagio K, Bloch R, Ortega A, Gonzalez-Serratos H (2006) Elastic properties of the sarcolemma–costamere complex of muscle cells in normal mice. AIP Conf Proc 854:51–53

    Article  Google Scholar 

  • Garcia-Pelagio K, Bloch R, Ortega A, Gonzalez-Serratos H (2008) Passive viscoelastic properties of costameres in EDL muscle in normal and dystrophin null mice. AIP Conf Proc 1032:268–271

    Article  Google Scholar 

  • Goldspink G, Fernandes K, Williams PE, Wells DJ (1994) Age-related changes in collagen gene expression in the muscles of mdx dystrophic and normal mice. Neuromuscul Disord 4(3):183–191

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Serratos H (1971) Inward spread of activation in vertebrate muscle fibres. J Physiol 212(3):777–799

    CAS  PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol 184:170–192

    CAS  PubMed  Google Scholar 

  • Hochmuth M (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    Article  CAS  PubMed  Google Scholar 

  • Hoffman EP, Brown R, Kunkel L (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  • Hutter OF, Burton FL, Bovell DL (1991) Mechanical properties of normal and mdx mouse sarcolemma: bearing on function of dystrophin. J Muscle Res Cell Motil 12:585–589

    Article  CAS  PubMed  Google Scholar 

  • Lapidos K, Kakkar R, McNally M (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Leckie FA, Dal Bello DJ (2009) Strength and stiffness of engineering systems. Springer, New York

    Google Scholar 

  • Minetti C, Cordone G, Beltrame F, Bado M, Bonilla E (1998) Disorganization of dystrophin costameric lattice in Becker muscular dystrophy. Muscle Nerve 21(2):211–216

    Article  CAS  PubMed  Google Scholar 

  • Mitchison JM (1953) The thickness of the sea urchin fertilization membrane. Exp Cell Res 5(2):536–538

    Article  CAS  PubMed  Google Scholar 

  • Na S, Chowdhury F, Tay B, Ouyang M, Gregor M, Wang Y, Wiche G, Wang N (2009) Plectin contributes to mechanical properties of living cells. Am J Physiol Cell Physiol 296(4):C868–C877

    Article  CAS  PubMed  Google Scholar 

  • Needham D, Hochmuth M (1992) A sensitive measure of surface stress in the resting neutrophil. Biophys J 61(6):1664–1670

    Article  CAS  PubMed  Google Scholar 

  • Nelkon M (1979) Scholarship physics. Hienemann Educational Publishers, London

    Google Scholar 

  • Nigro V, Piluso G, Belsito A, Politano L et al (1996) Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum Mol Genet 5(8):1179–1186

    Article  CAS  PubMed  Google Scholar 

  • Nowak K, Davies K (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5:872–876

    Article  CAS  PubMed  Google Scholar 

  • O’Neill A, Williams MW, Resneck W, Milner D, Capetanaki Y, Bloch RJ (2002) Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with membrane skeleton at costameres. Mol Biol Cell 13:2347–2359

    Article  PubMed  Google Scholar 

  • Oak SA, Zhou YW, Jarrett HW (2003) Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J Biol Chem 278(41):39287–39295

    Article  CAS  PubMed  Google Scholar 

  • Ohlendieck K, Ervasti J, Snook J, Campbell K (1991) Dystrophin–glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J Cell Biol 112:135–148

    Article  CAS  PubMed  Google Scholar 

  • Ozawa E (1998) From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21:421–438

    Article  CAS  PubMed  Google Scholar 

  • Pasternak C, Elson E (1985) Lymphocyte mechanical response triggered by cross-linking surface receptors. J Cell Biol 100:860–872

    Article  CAS  PubMed  Google Scholar 

  • Pasternak C, Wong S, Elson E (1995) Mechanical function of dystrophin in muscle cells. J Cell Biol 128(3):355–361

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, García-Morales V, Hernández MJ (2000) On the demonstration of the Young–Laplace equation in introductory physics courses. Phys Educ 35(2):126–129

    Article  Google Scholar 

  • Petersen N, McConnaughey W, Elson E (1982) Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci USA 79:5327–5331

    Article  CAS  PubMed  Google Scholar 

  • Petrof B, Shrager J, Stedman H, Kelly A, Sweeney L (1993) Dystrophin protect the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714

    Article  CAS  PubMed  Google Scholar 

  • Porter G, Dmytrenko G, Winkelmann J, Bloch R (1992) Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117(5):997–1005

    Article  CAS  PubMed  Google Scholar 

  • Quach NL, Rando TA (2006) Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293:38–52

    Article  CAS  PubMed  Google Scholar 

  • Rand RP (1964) Mechanical properties of the red cell membrane. Biophys J 4:303–316

    Article  CAS  PubMed  Google Scholar 

  • Rapoport S (1972) Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length. J Gen Physiol 59:559–585

    Article  PubMed  Google Scholar 

  • Reed P, Bloch RJ (2005) Postnatal changes in sarcolemmal organization in mdx mouse. Neuromuscul Disord 15(8):552–561

    Article  PubMed  Google Scholar 

  • Rybakova I, Patel J, Ervasti J (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150(5):1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Davis J, Weisleder N, Kostavassili I, McCulloch A, Raltson E, Capetanaki Y, Lieber R (2004) Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 86:2993–3008

    Article  CAS  PubMed  Google Scholar 

  • Stone MR, O’Neill A, Lovering R, Strong J, Resneck WG, Reed PW, Toivola D, Ursitti J, Omary BM, Bloch RJ (2007) Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 120(22):3999–4008

    Article  CAS  PubMed  Google Scholar 

  • Straub V, Bittner R, Leger J, Voit T (1991) Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J Cell Biol 119(5):1183–1191

    Article  Google Scholar 

  • Street SE (1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114:346–364

    Article  CAS  PubMed  Google Scholar 

  • Taylor R (2005) Classical mechanics. University Science Books, Sausalito

    Google Scholar 

  • Thoumine O, Cardoso O, Meister JJ (1999) Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur Biophys J 28(3):222–234

    Article  CAS  PubMed  Google Scholar 

  • Trans-Son-Tay R, Needham D, Yeung A, Hochmuth M (1991) Time-dependent recovery of passive neutrophils after large deformation. Biophys J 60(4):856–866

    Article  Google Scholar 

  • Tsai M, Frank R, Waugh R (1993) Passive mechanical behavior of human neutrophils: power law fluid. Biophys J 65:2078–2088

    Article  CAS  PubMed  Google Scholar 

  • Ursitti JA, Lee PC, Resneck WG, McNally MM, Bowman AL, O’Neill A, Stone MR, Bloch RJ (2004) Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J Biol Chem 279(40):41830–41838

    Article  CAS  PubMed  Google Scholar 

  • Waugh E, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26:115–132

    Article  CAS  PubMed  Google Scholar 

  • Wieneke S, Stehle R, Li Z, Jockusch H (2000) Generation of tension by skinned fibers and intact skeletal muscles from desmin-deficient mice. Biochem Biophys Res Commun 278:419–425

    Article  CAS  PubMed  Google Scholar 

  • Williams MW, Bloch RJ (1999a) Extensive but coordinate reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice. J Cell Biol 144:1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Williams MW, Bloch RJ (1999b) Differential distribution of dystrophin and beta-spectrin at the sarcolemma of fast twitch skeletal muscle fibers. J Muscle Res Cell Motil 20:383–393

    Article  CAS  PubMed  Google Scholar 

  • Winder S (1997) The membrane-cytoskeleton interface: the role of dystrophin and utrophin. J Muscle Res Cell Motil 18:617–629

    Article  CAS  PubMed  Google Scholar 

  • Wojcikiewicz E, Zhang X, Moy V (2004) Force and compliance measurements on living cells using Atomic Force Microscopy (AFM). Biol Proced Online 6:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wolff AV, Niday AK, Voelker KA, Call JA, Evans NP, Granata KP, Grange RW (2006) Passive mechanical properties of maturing extensor digitorum longus are not affected by lack of dystrophin. Muscle Nerve 34(3):304–312

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang X, Wei X, Chen W (2007) Characterization of viscoelastic properties of normal and osteoarthritic chondrocytes in experimental rabbit model. Osteoarthr Cartil 16(7):837–840

    Article  CAS  PubMed  Google Scholar 

  • Zubrzycka-Gaarn E, Bulman D, Karpati G et al (1988) The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333(6172):466–469

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants to R. J. Bloch from the National Institute of Heath (5R01AR055928) and the Muscular Dystrophy Association. K. P. García-Pelagio was supported during the Ph. D. program (Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México) by a scholarship from Consejo Nacional de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. González-Serratos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Pelagio, K.P., Bloch, R.J., Ortega, A. et al. Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice. J Muscle Res Cell Motil 31, 323–336 (2011). https://doi.org/10.1007/s10974-011-9238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-011-9238-9

Keywords

Navigation