Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice

  • K. P. García-Pelagio
  • R. J. Bloch
  • A. Ortega
  • H. González-Serratos
Original Paper

Abstract

We studied the biomechanical properties of the sarcolemma and its links through costameres to the contractile apparatus in single mammalian myofibers of Extensor digitorum longus muscles isolated from wild (WT) and dystrophin-null (mdx) mice. Suction pressures (P) applied through a pipette to the sarcolemma generated a bleb, the height of which increased with increasing P. Larger increases in P broke the connections between the sarcolemma and myofibrils and eventually caused the sarcolemma to burst. We used the values of P at which these changes occurred to estimate the tensions and stiffness of the system and its individual elements. Tensions of the whole system and the sarcolemma, as well as the maximal tension sustained by the costameres, were all significantly lower (1.8–3.3 fold) in muscles of mdx mice compared to WT. Values of P at which separation and bursting occurred, as well as the stiffness of the whole system and of the isolated sarcolemma, were ~2-fold lower in mdx than in WT. Our results indicate that the absence of dystrophin reduces muscle stiffness, increases sarcolemmal deformability, and compromises the mechanical stability of costameres and their connections to nearby myofibrils.

Keywords

Muscle mechanics Costamere mdx Superficial tension Dystrophic muscle Muscular dystrophy 

References

  1. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332CrossRefPubMedGoogle Scholar
  2. Anastasi G, Cutroneo G, Santoro G, Arco A, Rizzo G, Bramanti P, Rinaldi C, Sidoti A, Amato A, Favaloro A (2008) Costameric proteins in human skeletal muscle during muscular inactivity. J Anat 213(3):284–295CrossRefPubMedGoogle Scholar
  3. Ayalon G, Davis J, Scotland P, Bennett V (2008) An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135(7):1189–1200CrossRefPubMedGoogle Scholar
  4. Barton E (2006) Impact of Sarcoglycan complex on mechanical signal transduction in murine skeletal muscle. Am J Physiol Cell Physiol 290(2):C411–C419CrossRefPubMedGoogle Scholar
  5. Beedle A, Nienaber P, Campbell K (2007) Fukutin-related protein associates with the sarcolemmal dystrophin–glycoprotein complex. J Biol Chem 282(23):16713–16717CrossRefPubMedGoogle Scholar
  6. Bhosle R, Michele D, Campbell K, Li Z, Robson R (2006) Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun 346(3):768–777CrossRefPubMedGoogle Scholar
  7. Blaauw B, Mammucari C, Toniolo L, Agatea L, Abraham R, Sandri M, Reggiani C, Schaffino S (2008) Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle. Hum Mol Genet 17(23):3686–3696CrossRefPubMedGoogle Scholar
  8. Blaauw B, Agate L, Toniolo L, Canato M, Quarta M, Dyar K, Danieli-Betto D, Betto R, Schiaffino S, Reggiani C (2010) Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy. J Appl Physiol 108(1):105–111CrossRefPubMedGoogle Scholar
  9. Bloch R, Gonzalez-Serratos H (2003) Lateral force transmission across costameres in skeletal muscle. Exerc Sport Sci Rev 31(2):73–78CrossRefPubMedGoogle Scholar
  10. Bloch R, Capetanaki Y, O’Neill A, Reed P, Williams MW, Resneck W, Porter N, Ursitti J (2002) Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin Orthop Relat Res 403S:S203–S210CrossRefGoogle Scholar
  11. Boal D (2006) Mechanics of the cell. Cambridge University Press, CambridgeGoogle Scholar
  12. Bobet J, Mooney RF, Gordon T (1998) Force and stiffness of old dystrophic (mdx) mouse skeletal muscles. Muscle Nerve 21(4):536–539CrossRefPubMedGoogle Scholar
  13. Brenman J, Chao D, Xia H, Aldape K, Bredt D (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscles sarcolemma in Duchenne muscular dystrophy. Cell 82(5):743–752CrossRefPubMedGoogle Scholar
  14. Bull H (1964) An introduction to physical biochemistry. Davis Co, PhiladelphiaGoogle Scholar
  15. Campbell K, Stull T (2003) Skeletal muscle basement membrane–sarcolemma–cytoskeleton interaction minireview series. J Biol Chem 278(15):12599–12600CrossRefPubMedGoogle Scholar
  16. Caputo C, Bolaños P (1994) Fluo-3 signals associated with potassium contractures in single amphibian muscle fibers. J Physiol 481:119–128PubMedGoogle Scholar
  17. Claffin D, Brooks S (2008) Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy. Am J Physiol Cell Physiol 294:C651–C658CrossRefGoogle Scholar
  18. Dmytrenko G, Pumplin D, Bloch R (1993) Dystrophin in membrane skeletal network: localization and comparison to other proteins. J Neurosci 13(2):547–558PubMedGoogle Scholar
  19. Dulhunty AF, Franzini-Armstrong C (1975) The relative contribution of the folds and caveolae to the surface membrane of frog skeletal muscle fibers at different sarcomere length. J Physiol 250:513–539PubMedGoogle Scholar
  20. Dull RW (1941) Mathematics for engineers. McGraw-Hill Book Company, New YorkGoogle Scholar
  21. Ehmer S, Herrmann H, Bittner R, Voit T (1997) Spatial distribution of beta-spectrin in normal and dystrophic human skeletal muscle. Acta Neuropathol 94(3):240–246CrossRefPubMedGoogle Scholar
  22. Ervasti J (2003) Costameres: the Achilles’ heel of herculean muscle. J Biol Chem 278(16):13591–13594CrossRefPubMedGoogle Scholar
  23. Ervasti J (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochem Biophys Acta 1772(2):108–117PubMedGoogle Scholar
  24. Ervasti J, Campbell K (1991) Membrane organization of the dystrophin–glycoprotein complex. Cell 66(6):1121–1131CrossRefPubMedGoogle Scholar
  25. Ervasti J, Campbell K (1993) A role for the dystrophin–glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122:809–823CrossRefPubMedGoogle Scholar
  26. Evans E, Hochmuth M (1976) Membrane viscoelasticity. Biophys J 16(1):1–11CrossRefPubMedGoogle Scholar
  27. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipette aspiration. Biophys J 56:151–160CrossRefPubMedGoogle Scholar
  28. Fonbrune P (1949) Technique de Micromanipulation. Massonn et Cie, ParisGoogle Scholar
  29. Garcia-Pelagio K, Bloch R, Ortega A, Gonzalez-Serratos H (2006) Elastic properties of the sarcolemma–costamere complex of muscle cells in normal mice. AIP Conf Proc 854:51–53CrossRefGoogle Scholar
  30. Garcia-Pelagio K, Bloch R, Ortega A, Gonzalez-Serratos H (2008) Passive viscoelastic properties of costameres in EDL muscle in normal and dystrophin null mice. AIP Conf Proc 1032:268–271CrossRefGoogle Scholar
  31. Goldspink G, Fernandes K, Williams PE, Wells DJ (1994) Age-related changes in collagen gene expression in the muscles of mdx dystrophic and normal mice. Neuromuscul Disord 4(3):183–191CrossRefPubMedGoogle Scholar
  32. Gonzalez-Serratos H (1971) Inward spread of activation in vertebrate muscle fibres. J Physiol 212(3):777–799PubMedGoogle Scholar
  33. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol 184:170–192PubMedGoogle Scholar
  34. Hochmuth M (2000) Micropipette aspiration of living cells. J Biomech 33:15–22CrossRefPubMedGoogle Scholar
  35. Hoffman EP, Brown R, Kunkel L (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928CrossRefPubMedGoogle Scholar
  36. Hutter OF, Burton FL, Bovell DL (1991) Mechanical properties of normal and mdx mouse sarcolemma: bearing on function of dystrophin. J Muscle Res Cell Motil 12:585–589CrossRefPubMedGoogle Scholar
  37. Lapidos K, Kakkar R, McNally M (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031CrossRefPubMedGoogle Scholar
  38. Leckie FA, Dal Bello DJ (2009) Strength and stiffness of engineering systems. Springer, New YorkGoogle Scholar
  39. Minetti C, Cordone G, Beltrame F, Bado M, Bonilla E (1998) Disorganization of dystrophin costameric lattice in Becker muscular dystrophy. Muscle Nerve 21(2):211–216CrossRefPubMedGoogle Scholar
  40. Mitchison JM (1953) The thickness of the sea urchin fertilization membrane. Exp Cell Res 5(2):536–538CrossRefPubMedGoogle Scholar
  41. Na S, Chowdhury F, Tay B, Ouyang M, Gregor M, Wang Y, Wiche G, Wang N (2009) Plectin contributes to mechanical properties of living cells. Am J Physiol Cell Physiol 296(4):C868–C877CrossRefPubMedGoogle Scholar
  42. Needham D, Hochmuth M (1992) A sensitive measure of surface stress in the resting neutrophil. Biophys J 61(6):1664–1670CrossRefPubMedGoogle Scholar
  43. Nelkon M (1979) Scholarship physics. Hienemann Educational Publishers, LondonGoogle Scholar
  44. Nigro V, Piluso G, Belsito A, Politano L et al (1996) Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum Mol Genet 5(8):1179–1186CrossRefPubMedGoogle Scholar
  45. Nowak K, Davies K (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5:872–876CrossRefPubMedGoogle Scholar
  46. O’Neill A, Williams MW, Resneck W, Milner D, Capetanaki Y, Bloch RJ (2002) Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with membrane skeleton at costameres. Mol Biol Cell 13:2347–2359CrossRefPubMedGoogle Scholar
  47. Oak SA, Zhou YW, Jarrett HW (2003) Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J Biol Chem 278(41):39287–39295CrossRefPubMedGoogle Scholar
  48. Ohlendieck K, Ervasti J, Snook J, Campbell K (1991) Dystrophin–glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J Cell Biol 112:135–148CrossRefPubMedGoogle Scholar
  49. Ozawa E (1998) From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21:421–438CrossRefPubMedGoogle Scholar
  50. Pasternak C, Elson E (1985) Lymphocyte mechanical response triggered by cross-linking surface receptors. J Cell Biol 100:860–872CrossRefPubMedGoogle Scholar
  51. Pasternak C, Wong S, Elson E (1995) Mechanical function of dystrophin in muscle cells. J Cell Biol 128(3):355–361CrossRefPubMedGoogle Scholar
  52. Pellicer J, García-Morales V, Hernández MJ (2000) On the demonstration of the Young–Laplace equation in introductory physics courses. Phys Educ 35(2):126–129CrossRefGoogle Scholar
  53. Petersen N, McConnaughey W, Elson E (1982) Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci USA 79:5327–5331CrossRefPubMedGoogle Scholar
  54. Petrof B, Shrager J, Stedman H, Kelly A, Sweeney L (1993) Dystrophin protect the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714CrossRefPubMedGoogle Scholar
  55. Porter G, Dmytrenko G, Winkelmann J, Bloch R (1992) Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117(5):997–1005CrossRefPubMedGoogle Scholar
  56. Quach NL, Rando TA (2006) Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Dev Biol 293:38–52CrossRefPubMedGoogle Scholar
  57. Rand RP (1964) Mechanical properties of the red cell membrane. Biophys J 4:303–316CrossRefPubMedGoogle Scholar
  58. Rapoport S (1972) Mechanical properties of the sarcolemma and myoplasm in frog muscle as a function of sarcomere length. J Gen Physiol 59:559–585CrossRefPubMedGoogle Scholar
  59. Reed P, Bloch RJ (2005) Postnatal changes in sarcolemmal organization in mdx mouse. Neuromuscul Disord 15(8):552–561CrossRefPubMedGoogle Scholar
  60. Rybakova I, Patel J, Ervasti J (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150(5):1209–1214CrossRefPubMedGoogle Scholar
  61. Shah S, Davis J, Weisleder N, Kostavassili I, McCulloch A, Raltson E, Capetanaki Y, Lieber R (2004) Structural and functional roles of desmin in mouse skeletal muscle during passive deformation. Biophys J 86:2993–3008CrossRefPubMedGoogle Scholar
  62. Stone MR, O’Neill A, Lovering R, Strong J, Resneck WG, Reed PW, Toivola D, Ursitti J, Omary BM, Bloch RJ (2007) Absence of keratin 19 in mice causes skeletal myopathy with mitochondrial and sarcolemmal reorganization. J Cell Sci 120(22):3999–4008CrossRefPubMedGoogle Scholar
  63. Straub V, Bittner R, Leger J, Voit T (1991) Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J Cell Biol 119(5):1183–1191CrossRefGoogle Scholar
  64. Street SE (1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114:346–364CrossRefPubMedGoogle Scholar
  65. Taylor R (2005) Classical mechanics. University Science Books, SausalitoGoogle Scholar
  66. Thoumine O, Cardoso O, Meister JJ (1999) Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur Biophys J 28(3):222–234CrossRefPubMedGoogle Scholar
  67. Trans-Son-Tay R, Needham D, Yeung A, Hochmuth M (1991) Time-dependent recovery of passive neutrophils after large deformation. Biophys J 60(4):856–866CrossRefGoogle Scholar
  68. Tsai M, Frank R, Waugh R (1993) Passive mechanical behavior of human neutrophils: power law fluid. Biophys J 65:2078–2088CrossRefPubMedGoogle Scholar
  69. Ursitti JA, Lee PC, Resneck WG, McNally MM, Bowman AL, O’Neill A, Stone MR, Bloch RJ (2004) Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J Biol Chem 279(40):41830–41838CrossRefPubMedGoogle Scholar
  70. Waugh E, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26:115–132CrossRefPubMedGoogle Scholar
  71. Wieneke S, Stehle R, Li Z, Jockusch H (2000) Generation of tension by skinned fibers and intact skeletal muscles from desmin-deficient mice. Biochem Biophys Res Commun 278:419–425CrossRefPubMedGoogle Scholar
  72. Williams MW, Bloch RJ (1999a) Extensive but coordinate reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice. J Cell Biol 144:1259–1270CrossRefPubMedGoogle Scholar
  73. Williams MW, Bloch RJ (1999b) Differential distribution of dystrophin and beta-spectrin at the sarcolemma of fast twitch skeletal muscle fibers. J Muscle Res Cell Motil 20:383–393CrossRefPubMedGoogle Scholar
  74. Winder S (1997) The membrane-cytoskeleton interface: the role of dystrophin and utrophin. J Muscle Res Cell Motil 18:617–629CrossRefPubMedGoogle Scholar
  75. Wojcikiewicz E, Zhang X, Moy V (2004) Force and compliance measurements on living cells using Atomic Force Microscopy (AFM). Biol Proced Online 6:1–9CrossRefPubMedGoogle Scholar
  76. Wolff AV, Niday AK, Voelker KA, Call JA, Evans NP, Granata KP, Grange RW (2006) Passive mechanical properties of maturing extensor digitorum longus are not affected by lack of dystrophin. Muscle Nerve 34(3):304–312CrossRefPubMedGoogle Scholar
  77. Zhang Q, Wang X, Wei X, Chen W (2007) Characterization of viscoelastic properties of normal and osteoarthritic chondrocytes in experimental rabbit model. Osteoarthr Cartil 16(7):837–840CrossRefPubMedGoogle Scholar
  78. Zubrzycka-Gaarn E, Bulman D, Karpati G et al (1988) The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333(6172):466–469CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • K. P. García-Pelagio
    • 1
  • R. J. Bloch
    • 2
  • A. Ortega
    • 1
  • H. González-Serratos
    • 2
    • 3
  1. 1.Departamento de Bioquímica, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Department of PhysiologyUniversity of Maryland, School of MedicineBaltimoreUSA
  3. 3.Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations