Skip to main content
Log in

Myostatin knockout mice increase oxidative muscle phenotype as an adaptive response to exercise

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Myostatin-deficient mice (MSTN /) display excessive muscle mass and this is associated with a profound loss of oxidative metabolic properties. In this study we analysed the effect of two endurance-based exercise regimes, either a forced high-impact swim training or moderate intensity voluntary wheel running on the adaptive properties of the tibialis anterior and plantaris muscle from MSTN / mice. MSTN / and wild type (MSTN +/+) animals had comparable performances in the wheel running regime in terms of distance, average speed and time, but MSTN / mice showed a reduced ability to sustain a high-impact activity via swimming. Swim training elicited muscle specific adaptations on fibre type distribution in MSTN /; the tibialis anterior displaying a partial transformation in contrast to the plantaris which showed no change. Conversely, wheel running induced similar changes in fibre type composition of both muscles, favouring transitions from IIB-to-IIA. Succinate dehydrogenase activity, an indicator of mitochondrial oxidative potential was increased in response to either exercise regime, with wheel running eliciting more robust changes in the MSTN / muscles. Examination of the cross sectional area of individual fibre types showed genotype-specific responses with MSTN / mice exhibiting an incapability of fibre enlargement following the wheel running regime, as opposed to MSTN +/+ mice and a greater susceptibility to muscle fibre area loss following swimming. In conclusion, the muscle fibre hypertrophy, oxidative capacity and glycolytic phenotype of myostatin deficient muscle can be altered with endurance exercise regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen DL, Harrison BC, Maass A, Bell ML, Byrnes WC, Leinwand LA (2001a) Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J Appl Physiol 90:1900–1908

    CAS  PubMed  Google Scholar 

  • Allen DL, Harrison BC, Sartorius C, Byrnes WC, Leinwand LA (2001b) Mutation of the IIB myosin heavy chain gene results in muscle fiber loss and compensatory hypertrophy. Am J Physiol Cell Physiol 280:C637–C645

    CAS  PubMed  Google Scholar 

  • Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G, Partridge T, Zammit P, Bunger L, Patel K (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci USA 104:1835–1840

    Article  CAS  PubMed  Google Scholar 

  • Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, Mouisel E, Hourde C, Macharia R, Friedrichs M, Relaix F, Zammit PS, Matsakas A, Patel K, Partridge T (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci USA 106:7479–7484

    Article  CAS  PubMed  Google Scholar 

  • Billat LV (1996) Use of blood lactate measurements for prediction of exercise performance and for control of training Recommendations for long-distance running. Sports Med 22:157–175

    Article  CAS  PubMed  Google Scholar 

  • Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E, Abraham R, Sandri M, Schiaffino S, Reggiani C (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23:3896–3905

    Article  CAS  PubMed  Google Scholar 

  • de Leon R, Hodgson JA, Roy RR, Edgerton VR (1994) Extensor- and flexor-like modulation within motor pools of the rat hindlimb during treadmill locomotion and swimming. Brain Res 654:241–250

    Article  PubMed  Google Scholar 

  • Dimauro J, Balnave RJ, Shorey CD (1992) Effects of anabolic steroids and high intensity exercise on rat skeletal muscle fibres and capillarization A morphometric study. Eur J Appl Physiol Occup Physiol 64:204–212

    Article  CAS  PubMed  Google Scholar 

  • Elashry MI, Otto A, Matsakas A, El-Morsy SE, Patel K (2009) Morphology and myofiber composition of skeletal musculature of the forelimb in young and aged wild type and myostatin null mice. Rejuvenation Res 12:269–281

    Article  CAS  PubMed  Google Scholar 

  • Gruner JA, Altman J (1980) Swimming in the rat: analysis of locomotor performance in comparison to stepping. Exp Brain Res 40:374–382

    CAS  PubMed  Google Scholar 

  • Gulve EA, Rodnick KJ, Henriksen EJ, Holloszy JO (1993) Effects of wheel running on glucose transporter (GLUT4) concentration in skeletal muscle of young adult and old rats. Mech Ageing Dev 67:187–200

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW, Samaddar T, Pennington C, McCormick J (2006) Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J Bone Miner Res 21:477–483

    Article  CAS  PubMed  Google Scholar 

  • Hayes A, Lynch GS, Williams DA (1993) The effects of endurance exercise on dystrophic mdx mice I. Contractile and histochemical properties of intact muscles. Proc Biol Sci 253:19–25

    Article  CAS  PubMed  Google Scholar 

  • Holmes JH, Ashmore CR, Robinson DW (1973) Effects of stress on cattle with hereditary muscular hypertrophy. J Anim Sci 36:684–694

    CAS  PubMed  Google Scholar 

  • Houle-Leroy P, Garland T Jr, Swallow JG, Guderley H (2000) Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus. J Appl Physiol 89:1608–1616

    CAS  PubMed  Google Scholar 

  • Ikeda S, Kawamoto H, Kasaoka K, Hitomi Y, Kizaki T, Sankai Y, Ohno H, Haga S, Takemasa T (2006) Muscle type-specific response of PGC-1 alpha and oxidative enzymes during voluntary wheel running in mouse skeletal muscle. Acta Physiol (Oxf) 188:217–223

    Article  CAS  Google Scholar 

  • Ishihara A, Hirofuji C, Nakatani T, Itoh K, Itoh M, Katsuta S (2002) Effects of running exercise with increasing loads on tibialis anterior muscle fibres in mice. Exp Physiol 87:113–116

    PubMed  Google Scholar 

  • Jasmin BJ, Gardiner PF (1987) Patterns of EMG activity of rat plantaris muscle during swimming and other locomotor activities. J Appl Physiol 63:713–718

    CAS  PubMed  Google Scholar 

  • Konhilas JP, Widegren U, Allen DL, Paul AC, Cleary A, Leinwand LA (2005) Loaded wheel running and muscle adaptation in the mouse. Am J Physiol Heart Circ Physiol 289:H455–H465

    Article  CAS  PubMed  Google Scholar 

  • Kovanen V, Suominen H, Heikkinen E (1980) Connective tissue of “fast” and “slow” skeletal muscle in rats–effects of endurance training. Acta Physiol Scand 108:173–180

    Article  CAS  PubMed  Google Scholar 

  • Laughlin MH, Mohrman SJ, Armstrong RB (1984) Muscular blood flow distribution patterns in the hindlimb of swimming rats. Am J Physiol 246:H398–H403

    CAS  PubMed  Google Scholar 

  • Lennon DL, Mance MJ (1986) Interorgan cooperativity in carnitine metabolism in the trained state. J Appl Physiol 60:1659–1664

    CAS  PubMed  Google Scholar 

  • Lynch GS, Stephenson DG, Williams DA (1991) Endurance exercise effects on the contractile properties of single, skinned skeletal muscle fibres of young rats. Pflugers Arch 418:161–167

    Article  CAS  PubMed  Google Scholar 

  • Matsakas A, Patel K (2009) Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol Histopathol 24:611–629

    PubMed  Google Scholar 

  • Matsakas A, Nikolaidis MG, Kokalas N, Mougios V, Diel P (2004) Effect of voluntary exercise on the expression of IGF-I and androgen receptor in three rat skeletal muscles and on serum IGF-I and testosterone levels. Int J Sports Med 25:502–508

    Article  CAS  PubMed  Google Scholar 

  • Matsakas A, Friedel A, Hertrampf T, Diel P (2005) Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 183:299–307

    Article  CAS  PubMed  Google Scholar 

  • Matsakas A, Bozzo C, Cacciani N, Caliaro F, Reggiani C, Mascarello F, Patruno M (2006) Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Exp Physiol 91:983–994

    Article  CAS  PubMed  Google Scholar 

  • Matsakas A, Foster K, Otto A, Macharia R, Elashry MI, Feist S, Graham I, Foster H, Yaworsky P, Walsh F, Dickson G, Patel K (2009) Molecular, cellular and physiological investigation of myostatin propeptide-mediated muscle growth in adult mice. Neuromuscul Disord 19:489–499

    Article  PubMed  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461

    Article  CAS  PubMed  Google Scholar 

  • McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109:595–601

    CAS  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • Mendias CL, Marcin JE, Calerdon DR, Faulkner JA (2006) Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol 101:898–905

    Article  CAS  PubMed  Google Scholar 

  • Nakao C, Ookawara T, Kizaki T, Oh-Ishi S, Miyazaki H, Haga S, Sato Y, Ji LL, Ohno H (2000) Effects of swimming training on three superoxide dismutase isoenzymes in mouse tissues. J Appl Physiol 88:649–654

    CAS  PubMed  Google Scholar 

  • Pearson KG, Acharya H, Fouad K (2005) A new electrode configuration for recording electromyographic activity in behaving mice. J Neurosci Methods 148:36–42

    Article  CAS  PubMed  Google Scholar 

  • Peijie C, Zicai D, Haowen X, Renbao X (2004) Effects of chronic and acute training on glucocorticoid receptors concentrations in rats. Life Sci 75:1303–1311

    Article  PubMed  Google Scholar 

  • Petridou A, Nikolaidis MG, Matsakas A, Schulz T, Michna H, Mougios V (2005) Effect of exercise training on the fatty acid composition of lipid classes in rat liver, skeletal muscle, and adipose tissue. Eur J Appl Physiol 94:84–92

    Article  CAS  PubMed  Google Scholar 

  • Pette D (2002) The adaptive potential of skeletal muscle fibers. Can J Appl Physiol 27:423–448

    PubMed  Google Scholar 

  • Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    CAS  PubMed  Google Scholar 

  • Rehfeldt C, Ott G, Gerrard DE, Varga L, Schlote W, Williams JL, Renne U, Bunger L (2005) Effects of the compact mutant myostatin allele Mstn (Cmpt-dl1Abc) introgressed into a high growth mouse line on skeletal muscle cellularity. J Muscle Res Cell Motil 26:103–112

    Article  PubMed  Google Scholar 

  • Roy RR, Hirota WK, Kuehl M, Edgerton VR (1985) Recruitment patterns in the rat hindlimb muscle during swimming. Brain Res 337:175–178

    Article  CAS  PubMed  Google Scholar 

  • Roy RR, Hutchison DL, Pierotti DJ, Hodgson JA, Edgerton VR (1991) EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming. J Appl Physiol 70:2522–2529

    CAS  PubMed  Google Scholar 

  • Simoneau JA, Pette D (1988) Species-specific effects of chronic nerve stimulation upon tibialis anterior muscle in mouse, rat, guinea pig, and rabbit. Pflugers Arch 412:86–92

    CAS  PubMed  Google Scholar 

  • Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209:866–873

    Article  CAS  PubMed  Google Scholar 

  • Yancey SL, Overton JM (1993) Cardiovascular responses to voluntary and treadmill exercise in rats. J Appl Physiol 75:1334–1340

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K.P. and A.M would like to thank the Wellcome Trust (078649) and University of Reading and H.A. and E.M. acknowledge the Association Française contre les Myopathies for generous funding permitting the execution of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Matsakas.

Additional information

A. Matsakas and E. Mouisel contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 8641 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsakas, A., Mouisel, E., Amthor, H. et al. Myostatin knockout mice increase oxidative muscle phenotype as an adaptive response to exercise. J Muscle Res Cell Motil 31, 111–125 (2010). https://doi.org/10.1007/s10974-010-9214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-010-9214-9

Keywords

Navigation