Skip to main content
Log in

O-GlcNAcylation, an original modulator of contractile activity in striated muscle

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

There is growing evidence that O-linked N-acetyl-D-glucosaminylation, more simply termed O-GlcNAcylation or O-GlcNAc, is a post-translational modification involved in many cellular processes from transcription to modulation of protein properties. O-GlcNAc is a dynamic and reversible glycosylation and therefore quite similar to the phosphorylation/dephosphorylation process, with which O-GlcNAc can interplay. Since O-GlcNAc serves as a glucose sensor by the way of hexosamine biosynthesis pathway, this glycosylation is often associated with glucose toxicity and development of insulin resistance. In this way, O-GlcNAc could be involved in muscle pathological consequences of diabetes. Nevertheless, in regards of several studies performed in healthy striated muscles, O-GlcNAc seems to exert protective effects against different types of injuries. Recent new insights suggest a key implication of O-GlcNAc in skeletal and cardiac muscles contractile activity, in particular by O-GlcNAc modification of motor as well as regulating contractile proteins. While evidence linked O-GlcNAc to the regulation of calcium activation properties, its exact role remains to be defined as well as the existence of potential interference with phosphorylation. The better understanding of the exact function of OGlcNAc in this physiological process could contribute to the determination of newly markers of skeletal dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arias EB, Cartee GD (2005) Relationship between protein O-linked glycosylation and insulin-stimulated glucose transport in rat skeletal muscle following calorie restriction or exposure to O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenyl-carbamate. Acta Physiol Scand 183:281–289

    Article  CAS  PubMed  Google Scholar 

  • Bilchick KC, Duncan JG, Ravi R, Takimoto E, Champion HC, Gao WD, Stull LB, Kass DA, Murphy AM (2007) Heart failure-associated alterations in troponin I phosphorylation impair ventricular relaxation-afterload and force-frequency responses and systolic function. Am J Physiol Heart Circ Physiol 292(1):H318–H325

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal DK, Stull JT (1980) Activation of skeletal muscle myosin light chain kinase by calcium(2+) and calmodulin. Biochemistry 19:5608–5614

    Article  CAS  PubMed  Google Scholar 

  • Bouché C, Serdy S, Kahn CR, Goldfine AB (2004) The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev 25(5):807–830

    Article  PubMed  Google Scholar 

  • Butkinaree C, Park K, Hart GW (2009) O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim Biophys Acta [Epub ahead of print]

  • Champattanachai V, Marchase RB, Chatham JC (2007) Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol 292(1):C178–C187

    Article  CAS  PubMed  Google Scholar 

  • Champattanachai V, Marchase RB, Chatham JC (2008) Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am J Physiol Cell Physiol 294(6):C1509–C1520

    Article  CAS  PubMed  Google Scholar 

  • Chou TY, Hart GW (2001) O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. Adv Exp Med Biol 491:413–418 Review

    CAS  PubMed  Google Scholar 

  • Cieniewski-Bernard C, Bastide B, Lefebvre T, Lemoine J, Mounier Y, Michalski JC (2004) Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Mol Cell Proteomics 3(6):577–585

    Article  CAS  PubMed  Google Scholar 

  • Cieniewski-Bernard C, Mounier Y, Michalski JC, Bastide B (2006) O-GlcNAc level variations are associated with the development of skeletal muscle atrophy. J Appl Physiol 100(5):1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem. 278(45):44230–44237

    Article  CAS  PubMed  Google Scholar 

  • Copeland RJ, Bullen JW, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity. Am J Physiol Endocrinol Metab 295(1):E17–E28

    Article  CAS  PubMed  Google Scholar 

  • Dillmann WH (1986) Diabetes mellitus and hypothyroidism induce changes in myosin isoenzyme distribution in the rat heart-do alterations in fuel flux mediate these changes? Adv Exp Med Biol 194:469–479 Review

    CAS  PubMed  Google Scholar 

  • Fülöp N, Mason MM, Dutta K, Wang P, Davidoff AJ, Marchase RB, Chatham JC (2007a) a) Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart. Am J Physiol Cell Physiol 292(4):C1370–C1380

    Article  PubMed  Google Scholar 

  • Fülöp N, Marchase RB, Chatham JC (2007b) Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 73(2):288–297

    Article  PubMed  Google Scholar 

  • Golfman LS, Wilson CR, Sharma S, Burgmaier M, Young ME, Guthrie PH, Van Arsdall M, Adrogue JV, Brown KK, Taegtmeyer H (2005) Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Am J Physiol Endocrinol Metab 289(2):E328–E336

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  PubMed  Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139):1017–1022 Review

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Matsuda N, Kimura J, Ishitani T, Tamada A, Gando S, Kemmotsu O, Kanno M (2000) Diminished function and expression of the cardiac Na + -Ca2 + exchanger in diabetic rats: implication in Ca2+ overload. J Physiol 527 Pt 1:85–94

    Article  CAS  PubMed  Google Scholar 

  • Hawkins M, Angelov I, Liu R, Barzilai N, Rossetti L (1997) The tissue concentration of UDP-N-acetylglucosamine modulates the stimulatory effect of insulin on skeletal muscle glucose uptake. J Biol Chem 272(8):4889–4895

    Article  CAS  PubMed  Google Scholar 

  • Hédou J, Cieniewski-Bernard C, Leroy Y, Michalski JC, Mounier Y, Bastide B (2007) O-linked N-acetylglucosaminylation is involved in the Ca2+ activation properties of rat skeletal muscle. J Biol Chem 282(14):10360–10369

    Article  PubMed  Google Scholar 

  • Hédou J, Bastide B, Page A, Michalski JC, Morelle W (2009) Mapping of O-linked beta-N- acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle. Proteomics 9(8):2139–2148

    Article  PubMed  Google Scholar 

  • Hu Y, Belke D, Suarez J, Swanson E, Clark R, Hoshijima M, Dillmann WH (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96(9):1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Issad T, Kuo M (2008) O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity. Trends Endocrinol Metab 19(10):380–389 Review

    Article  CAS  PubMed  Google Scholar 

  • Jones SP, Zachara NE, Ngoh GA, Hill BG, Teshima Y, Bhatnagar A, Hart GW, Marbán E (2008) Cardioprotection by N-acetylglucosamine linkage to cellular proteins. Circulation 117(9):1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Kamalesh M (2007) Heart failure in diabetes and related conditions. J Card Fail 13(10):861–873 Review

    Article  PubMed  Google Scholar 

  • Kamm KE, Stull JT (2001) Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 276:4527–4530

    Article  CAS  PubMed  Google Scholar 

  • Kawahito S, Kitahata H, Oshita S (2009) Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol 15(33):4137–4142 Review

    Article  CAS  PubMed  Google Scholar 

  • Khogali SE, Pringle SD, Weryk BV, Rennie MJ (2002) Is glutamine beneficial in ischemic heart disease? Nutrition 18(2):123–126

    Article  CAS  PubMed  Google Scholar 

  • Laing NG (2007) Congenital myopathies. Curr Opin Neurol 20:583–589

    Article  CAS  PubMed  Google Scholar 

  • Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre T, Dehennaut V, Guinez C, Olivier S, Drougat L, Mir AM, Mortuaire M, Vercoutter-Edouart AS, Michalski JC (2009) Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer’s disease. Biochim Biophys Acta [Epub ahead of print]

  • Liu J, Pang Y, Chang T, Bournelis P, Chatham JC, Marchase RB (2006a) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40:303–312

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Marchase RB, Chatham JC (2006b) Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels. J Mol Cell Cardiol 42:177–185

    Article  PubMed  Google Scholar 

  • Lorenz M, Poole KJ, Popp D, Rosenbaum G, Holmes KC (1995) An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol 246:108–119

    Article  CAS  PubMed  Google Scholar 

  • Metzger JM, Westfall MV (2004) Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ Res 94(2):146–158

    Article  CAS  PubMed  Google Scholar 

  • Moss RL, Fitzsimons DP (2006) Myosin light chain 2 into the mainstream of cardiac development and contractility. Circ Res 99:225–227

    Article  CAS  PubMed  Google Scholar 

  • Nagy T, Champattanachai V, Marchase RB, Chatham JC (2006) Glucosamine inhibits angiotensin II-induced cytoplasmic Ca2 + elevation in neonatal cardiomyocytes via protein-associated O-linked N-acetylglucosamine. Am J Physiol Cell Physiol 290(1):C57–C65

    Article  CAS  PubMed  Google Scholar 

  • Noland TA Jr, Kuo JF (1993) Phosphorylation of cardiac myosin light chain 2 by protein kinase C and myosin light chain kinase increases Ca(2+)-stimulated actomyosin MgATPase activity. Biochem Biophys Res Commun 193(1):254–260

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell N, Zachara NE, Hart GW, Marth JD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 24:1680–1690

    Article  PubMed  Google Scholar 

  • Oldfors A (2007) Hereditary myosin myopathies. Neuromuscul Disord 17:355–367

    Article  PubMed  Google Scholar 

  • Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gómez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55(3):608–615

    Article  CAS  PubMed  Google Scholar 

  • Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem 260(13):7951–7954

    CAS  PubMed  Google Scholar 

  • Ramirez-Correa GA, Jin W, Wang Z, Zhong X, Gao WD, Dias WB, Vecoli C, Hart GW, Murphy AM (2008) O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function. Circ Res 103(12):1354–1358

    Article  CAS  PubMed  Google Scholar 

  • Rossetti L, Hawkins M, Chen W, Gindi J, Barzilai N (1995) In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats. J Clin Invest 96(1):132–140

    Article  CAS  PubMed  Google Scholar 

  • Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 97(11):5735–5739

    Article  CAS  PubMed  Google Scholar 

  • Slawson C, Hart GW (2003) Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr Opin Struct Biol 13(5):631–636 Review

    Article  CAS  PubMed  Google Scholar 

  • Slawson C, Housley MP, Hart GW (2006) O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J Cell Biochem 97(1):71–83 Review

    Article  CAS  PubMed  Google Scholar 

  • Stelzer JE, Patel JR, Moss RL (2006) Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. J Gen Physiol 128:261–272

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Liu L, Liu N, Liu Y (2008) Muscular response and adaptation to diabetes mellitus. Front Biosci 13:4765–4794

    Article  CAS  PubMed  Google Scholar 

  • Teo CF, Wollaston-Hayden EE, Wells L (2009) Hexosamine flux, the O-GlcNAc modification, and the development of insulin resistance in adipocytes. Mol Cell Endocrinol [Epub ahead of print]

  • Van der Velden J, Papp Z, Boontje NM, Zaremba R, de Jong JW, Janssen PM, Hasenfuss G, Stienen GJ (2003a) Myosin light chain composition in non-failing donor and end-stage failing human ventricular myocardium. Adv Exp Med Biol 538:3–15

    PubMed  Google Scholar 

  • Van der Velden J, Papp Z, Zaremba R, Boontje NM, de Jong JW, Owen VJ, Burton PB, Goldmann P, Jaquet K, Stienen GJ (2003b) Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res 57(1):37–47

    Article  PubMed  Google Scholar 

  • Van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119(11):1473–1483

    Article  PubMed  Google Scholar 

  • Wang Z, Pandey A, Hart GW (2007) Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics 6(8):1365–1379

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci USA 16;105(37):13793–13798

    Google Scholar 

  • Wu T, Zhou H, Jin Z, Bi S, Yang X, Yi D, Liu W (2009) Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. Eur J Pharmacol 613(1–3):93–99

    Article  CAS  PubMed  Google Scholar 

  • Yki-Järvinen H, Daniels MC, Virkamäki A, Mäkimattila S, DeFronzo RA, McClain D (1996) Increased glutamine:fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes 45(3):302–307

    Article  PubMed  Google Scholar 

  • Yki-Järvinen H, Vogt C, Iozzo P, Pipek R, Daniels MC, Virkamäki A, Mäkimattila S, Mandarino L, DeFronzo RA, McClain D, Gottschalk WK (1997) UDP-N-acetylglucosamine transferase and glutamine: fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues. Diabetologia 40(1):76–81

    Article  PubMed  Google Scholar 

  • Yki-Järvinen H, Virkamaki A, Daniels MC, McClain D, Gottschalk WR (1998) Insulin and glucosamine infusions increase O-linked N-acetyl-glucosamine in skeletal muscle proteins in vivo. Metabolism 47:449–455

    Article  PubMed  Google Scholar 

  • Yuan C, Guo Y, Ravi R, Przyklenk K, Shilkofski N, Diez R, Cole RN, Murphy AM (2006) Myosin binding protein C is differentially phosphorylated upon myocardial stunning in canine and rat hearts–evidence for novel phosphorylation sites. Proteomics 6(14):4176–4186

    Article  CAS  PubMed  Google Scholar 

  • Zachara NE, Hart GW (2006) Cell signaling, the essential role of O-GlcNAc!. Biochim Biophys Acta 1761(5–6):599–617 Review

    CAS  PubMed  Google Scholar 

  • Zachara NF, O’Donnell N, Cheung WM, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142

    CAS  Google Scholar 

  • Zeidan Q, Hart GW (2010) The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci 123:13–22

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Yang S, Hu S, Chaudry IH, Marchase RB, Chatham JC (2007) The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock 27(4):402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National d’Etudes Spatiales (CNES, N°9024), the Région Nord-Pas de Calais and grants from Association Française contre les Myopathies (AFM, N°13890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bastide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cieniewski-Bernard, C., Montel, V., Stevens, L. et al. O-GlcNAcylation, an original modulator of contractile activity in striated muscle. J Muscle Res Cell Motil 30, 281–287 (2009). https://doi.org/10.1007/s10974-010-9201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-010-9201-1

Keywords

Navigation