Skip to main content

Advertisement

Log in

Diverse roles of the actin cytoskeleton in striated muscle

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

In addition to the highly specialized contractile apparatus, it is becoming increasingly clear that there is an extensive actin cytoskeleton which underpins a wide range of functions in striated muscle. Isoforms of cytoskeletal actin and actin-associated proteins (non-muscle myosins, cytoskeletal tropomyosins, and cytoskeletal α-actinins) have been detected in a number of regions of striated muscle: the sub-sarcolemmal costamere, the Z-disc and the T-tubule/sarcoplasmic reticulum membranes. As the only known function of these proteins is through association with actin filaments, their presence in striated muscles indicates that there are spatially and functionally distinct cytoskeletal actin filament systems in these tissues. These filaments are likely to have important roles in mechanical support, ion channel function, myofibrillogenenous and vesicle trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allard B (2006) Sarcolemmal ion channels in dystrophin-deficient skeletal muscle fibres. J Muscle Res Cell Motil 27:367–373

    Article  CAS  PubMed  Google Scholar 

  • Amsili S, Zer H, Hinderlich S, Krause S, Becker-Cohen M, MacArthur DG, North KN, Mitrani-Rosenbaum S (2008) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS ONE 3:e2477

    Article  PubMed  Google Scholar 

  • Argov Z, Mitrani-Rosenbaum S (2008) The hereditary inclusion body myopathy enigma and its future therapy. Neurotherapeutics 5:633–637

    Article  CAS  PubMed  Google Scholar 

  • Baines AJ, Pinder JC (2005) The spectrin-associated cytoskeleton in mammalian heart. Front Biosci 10:3020–3033

    Article  CAS  PubMed  Google Scholar 

  • Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    CAS  PubMed  Google Scholar 

  • Bennett PM, Baines AJ, Lecomte MC, Maggs AM, Pinder JC (2004) Not just a plasma membrane protein: in cardiac muscle cells α-II spectrin also shows a close association with myofibrils. J Muscle Res Cell Motil 25:119–126

    Article  CAS  PubMed  Google Scholar 

  • Bitoun M, Durieux A-C, Prudhon B, Bevilacqua JA, Herledan A, Sakanyan V, Urtizberea A, Cartier L, Romero NB, Guicheney P (2009) Dynamin 2 mutations associated with human diseases impair clathrin-mediated receptor endocytosis. Hum Mutat 30:1–9

    Article  Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    CAS  PubMed  Google Scholar 

  • Brozinick JT, Hawkins ED, Strawbridge AB, Elmendorf JS (2004) Disruption of cortical actin in skeletal muscle demonstrates an essential role of the cytoskeleton in GLUT4 translocation in insulin sensitive tissues. J Biol Chem 279:40699–40706

    Article  CAS  PubMed  Google Scholar 

  • Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, Bamburg JR, Jeffrey PL, Hardeman EC, Gunning P, Weinberger RP (2003) Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 14:1002–1016

    Article  CAS  PubMed  Google Scholar 

  • Calaghan SC, Le Guennec JY, White E (2004) Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol 84:29–59

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19:3334–3346

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Mottino G, Shin VY, Frank JS (1997) Subcellular distribution of ankyrin in developing rabbit heart-relationship to the Na+–Ca2+ exchanger. J Mol Cell Cardiol 29:2621–2629

    Article  CAS  PubMed  Google Scholar 

  • Chen XW, Leto D, Chiang SH, Wang Q, Saltiel AR (2007) Activation of RalA is required for insulin-stimulated GLUT4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c. Dev Cell 13:391–404

    Article  CAS  PubMed  Google Scholar 

  • Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706

    Article  CAS  PubMed  Google Scholar 

  • Corrado K, Rafael JA, Mills PL, Cole NM, Faulkner JA, Wang K, Chamberlain JS (1996) Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a “mild Becker” phenotype. J Cell Biol 134:873–884

    Article  CAS  PubMed  Google Scholar 

  • Craig SW, Pardo JV (1983) Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil 3:449–462

    Article  CAS  PubMed  Google Scholar 

  • Creed SJ, Bryce N, Naumanen P, Weinberger R, Lappalainen P, Stehn J, Gunning P (2008) Tropomyosin isoforms define distinct microfilament populations with different drug susceptibility. Eur J Cell Biol 87:709–720

    Article  CAS  PubMed  Google Scholar 

  • Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW (1997) Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Nat Acad Sci USA 94:9493–9498

    Article  CAS  PubMed  Google Scholar 

  • Dalby-Payne JR, O’Loughlin EV, Gunning P (2003) Polarization of specific tropomyosin isoforms in gastrointestinal epithelial cells and their impact on CFTR at the apical surface. Mol Biol Cell 14:4365–4375

    Article  CAS  PubMed  Google Scholar 

  • Du A, Sanger JM, Linask KK, Sanger JW (2003) Myofibrillogenesis in the first cardiomyocytes formed from isolated quail precardiac mesoderm. Dev Biol 257:382–394

    Article  CAS  PubMed  Google Scholar 

  • Dudnakova TV, Stepanova OV, Dergilev KV, Chadin AV, Shekhonin BV, Watterson DM, Shirinsky VP (2006) Myosin light chain kinase colocalizes with nonmuscle myosin IIB in myofibril precursors and sarcomeric Z-lines of cardiomyocytes. Cell Motil Cytoskelet 63:375–383

    Article  CAS  Google Scholar 

  • Eisenberg BR (1983) Quantitative ultrastructure of mammalian skeletal muscle. In: Peachey LD, Adrian RH, Geiger SR (eds) Handbook of physiology. Section 10: skeletal muscle. Amercian Physiology Society, Bethesda

    Google Scholar 

  • Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594

    Article  CAS  PubMed  Google Scholar 

  • Flucher BE, Morton ME, Froehner SC, Daniels MP (1990) Localization of the alpha 1 and alpha 2 subunits of the dihydropyridine receptor and ankyrin in skeletal muscle triads. Neuron 5:339–351

    Article  CAS  PubMed  Google Scholar 

  • Flucher BE, Takekura H, Franzini-Armstrong C (1993) Development of the excitation–contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160:135–147

    Article  CAS  PubMed  Google Scholar 

  • Foster LJ, Rudich A, Talior I, Patel N, Huang X, Furtado LM, Bilan PJ, Mann M, Klip A (2006) Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 5:64–75

    Article  CAS  PubMed  Google Scholar 

  • Gunning P, Weinberger R, Jeffrey P, Hardeman E (1998) Isoform sorting and the creation of intracellular compartments. Annu Rev Cell Dev Biol 14:339–372

    Article  CAS  PubMed  Google Scholar 

  • Gunning PW, Schevzov G, Kee AJ, Hardeman EC (2005) Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 15:334–341

    Article  Google Scholar 

  • Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 88:1–35

    Article  CAS  PubMed  Google Scholar 

  • Haase H (2007) Ahnak, a new player in beta-adrenergic regulation of the cardiac L-type Ca2+ channel. Cardiovasc Res 73:19–25

    Article  CAS  PubMed  Google Scholar 

  • Haase H, Pagel I, Khalina Y, Zacharzowsky U, Person V, Lutsch G, Petzhold D, Kott M, Schaper J, Morano I (2004) The carboxyl-terminal ahnak domain induces actin bundling and stabilizes muscle contraction. FASEB J 18:839–841

    CAS  PubMed  Google Scholar 

  • Hall ZW, Lubit BW, Schwartz JH (1981) Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J Cell Biol 90:789–792

    Article  CAS  PubMed  Google Scholar 

  • Hanft LM, Rybakova IN, Patel JR, Rafael-Fortney JA, Ervasti JM (2006) Cytoplasmic γ-actin contributes to a compensatory remodeling response in dystrophin-deficient muscle. Proc Natl Acad Sci USA 103:5385–5390

    Article  CAS  PubMed  Google Scholar 

  • Hanft LM, Bogan DJ, Mayer U, Kaufman SJ, Kornegay JN, Ervasti JM (2007) Cytoplasmic γ-actin expression in diverse animal models of muscular dystrophy. Neuromuscul Disord 17:569–574

    Article  PubMed  Google Scholar 

  • Hayes NV, Scott C, Heerkens E, Ohanian V, Maggs AM, Pinder JC, Kordeli E, Baines AJ (2000) Identification of a novel C-terminal variant of βII spectrin: two isoforms of βII spectrin have distinct intracellular locations and activities. J Cell Sci 113:2023–2034

    CAS  PubMed  Google Scholar 

  • Hohaus A, Person V, Behlke J, Schaper J, Morano I, Haase H (2002) The carboxyl-terminal region of ahnak provides a link between cardiac L-type Ca2+ channels and the actin-based cytoskeleton. FASEB J 16:1205–1216

    Article  CAS  PubMed  Google Scholar 

  • Hook J, Lemckert F, Qin H, Schevzov G, Gunning P (2003) Gamma tropomyosin gene products are required for embryonic development. Mol Cell Biol 24:2318–2323

    Article  Google Scholar 

  • Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  PubMed  Google Scholar 

  • Hughes JA, Cooke-Yarborough CM, Chadwick NC, Schevzov G, Arbuckle SM, Gunning P, Weinberger RP (2003) High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors. Glia 42:25–35

    Article  PubMed  Google Scholar 

  • Johnson BD, Scheuer T, Catterall WA (2005) Convergent regulation of skeletal muscle Ca2+ channels by dystrophin, the actin cytoskeleton, and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 102:4191–4196

    Article  CAS  PubMed  Google Scholar 

  • Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26

    Article  PubMed  Google Scholar 

  • Kanzaki M (2006) Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J 53:267–293

    Article  CAS  PubMed  Google Scholar 

  • Kee AJ, Schevzov G, Nair-Shalliker V, Robinson CS, Vrhovski B, Ghoddusi M, Qiu MR, Lin JJC, Weinberger R, Gunning PW, Hardeman EC (2004) Sorting of a nonmuscle tropomyosin to a novel cytoskeletal compartment in skeletal muscle results in muscular dystrophy. J Cell Biol 166:685–696

    Article  CAS  PubMed  Google Scholar 

  • Kee AJ, Gunning PW, Hardeman EC (2009) A cytoskeletal tropomyosin can compromise the structural integrity of skeletal muscle. Cell Motil Cytoskelet 66:710–720

    Article  CAS  Google Scholar 

  • Khan AH, Thurmond DC, Yang C, Ceresa BP, Sigmund CD, Pessin JE (2001) Munc18c regulates insulin-stimulated glut4 translocation to the transverse tubules in skeletal muscle. J Biol Chem 276:4063–4069

    Article  CAS  PubMed  Google Scholar 

  • Kordeli E (2000) The spectrin-based skeleton at the postsynaptic membrane of the neuromuscular junction. Microsc Res Tech 49:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kordeli E, Ludosky MA, Deprette C, Frappier T, Cartaud J (1998) AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber. J Cell Sci 111:2197–2207

    CAS  PubMed  Google Scholar 

  • Kostin S, Scholz D, Shimada T, Maeno Y, Mollnau H, Hein S, Schaper J (1998) The internal and external protein scaffold of the T-tubular system in cardiomyocytes. Cell Tissue Res 294:449–460

    Article  CAS  PubMed  Google Scholar 

  • Lader AS, Kwiatkowski DJ, Cantiello HF (1999) Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am J Physiol 277:C1277–C1283

    CAS  PubMed  Google Scholar 

  • Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen HP, Ploug T, Prats C, Tavare JM, Galbo H (2006) Imaging of insulin signaling in skeletal muscle of living mice shows major role of T-tubules. Diabetes 55:1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Leach RN, Desai JC, Orchard CH (2005) Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes. Cell Calcium 38:515–526

    Article  CAS  PubMed  Google Scholar 

  • Li ZP, Burke EP, Frank JS, Bennett V, Philipson KD (1993) The cardiac Na+–Ca2+ exchanger binds to the cytoskeletal protein ankyrin. J Biol Chem 268:11489–11491

    CAS  PubMed  Google Scholar 

  • Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL (1997) Tropomyosin isoforms in nonmuscle cells. Int Rev Cytol 170:1–38

    Article  CAS  PubMed  Google Scholar 

  • Lloyd CM, Berendse M, Lloyd DG, Schevzov G, Grounds MD (2004) A novel role for non-muscle gamma-actin in skeletal muscle sarcomere assembly. Exp Cell Res 297:82–96

    Article  CAS  PubMed  Google Scholar 

  • LoRusso SM, Rhee D, Sanger JM, Sanger JW (1997) Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil Cytoskelet 37:183–198

    Article  CAS  Google Scholar 

  • Lowe JS, Palygin O, Bhasin N, Hund TJ, Boyden PA, Shibata E, Anderson ME, Mohler PJ (2008) Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J Cell Biol 180:173–186

    Article  CAS  PubMed  Google Scholar 

  • Lubit BW (1984) Association of beta-cytoplasmic actin with high concentrations of acetylcholine receptor (AChR) in normal and anti-AChR-treated primary rat muscle cultures. J Histochem Cytochem 32:973–981

    CAS  PubMed  Google Scholar 

  • Lubit BW, Schwartz JH (1980) An antiactin antibody that distinguishes between cytoplasmic and skeletal muscle actins. J Cell Biol 86:891–897

    Article  CAS  PubMed  Google Scholar 

  • Messina DA, Lemanski LF (1989) Immunocytochemical studies of spectrin in hamster cardiac tissue. Cell Motil Cytoskelet 12:139–149

    Article  CAS  Google Scholar 

  • Mohler PJ, Wehrens XHT (2007) Mechanisms of human arrhythmia syndromes: abnormal cardiac macromolecular interactions. Physiology 22:342–350

    Article  CAS  PubMed  Google Scholar 

  • Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Nat Acad Sci USA 101:17533–17538

    Article  CAS  PubMed  Google Scholar 

  • Mohler PJ, Davis JQ, Bennett V (2005) Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 3:e423

    Article  PubMed  Google Scholar 

  • Nakata T, Nishina Y, Yorifuji H (2001) Cytoplasmic γ-actin as a Z-disc protein. Biochem Biophys Res Commun 286:156–163

    Article  CAS  PubMed  Google Scholar 

  • Otey CA, Kalnoski MH, Bulinski JC (1987) Identification and quantification of actin isoforms in vertebrate cells and tissues. J Cell Biochem 34:113–124

    Article  CAS  PubMed  Google Scholar 

  • Papponen H, Kaisto T, Leinonen S, Kaakinen M, Metsikko K (2009) Evidence for γ-actin as a Z disc component in skeletal myofibers. Exp Cell Res 315:218–225

    Article  CAS  PubMed  Google Scholar 

  • Pardo JV, Pittenger MF, Craig SW (1983a) Subcellular sorting of isoactins: selective association of gamma actin with skeletal muscle mitochondria. Cell 32:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Pardo JV, Siliciano JD, Craig SW (1983b) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci USA 80:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Percival JM, Thomas G, Cock TA, Gardiner EM, Jeffrey PL, Lin JJ, Weinberger RP, Gunning P (2000) Sorting of tropomyosin isoforms in synchronised NIH 3T3 fibroblasts: evidence for distinct microfilament populations. Cell Motil Cytoskelet 47:189–208

    Article  CAS  Google Scholar 

  • Percival JM, Hughes JAI, Brown DL, Schevzov G, Heimann K, Vrhovski B, Bryce N, Stow JL, Gunning PW (2004) Targeting of a tropomyosin isoform to short microfilaments associated with the golgi complex. Mol Biol Cell 15:268–280

    Article  CAS  PubMed  Google Scholar 

  • Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E (1998) Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol 142:1429–1446

    Article  CAS  PubMed  Google Scholar 

  • Porter GA, Dmytrenko GM, Winkelmann JC, Bloch RJ (1992) Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117:997–1005

    Google Scholar 

  • Prins KW, Lowe DA, Ervasti JM (2008) Skeletal muscle-specific ablation of γ-cyto-actin does not exacerbate the mdx phenotype. PLoS ONE 3:e2419

    Article  PubMed  Google Scholar 

  • Rudich A, Klip A (2003) Push/pull mechanisms of GLUT4 traffic in muscle cells. Acta Physiol Scand 178:297–308

    Article  CAS  PubMed  Google Scholar 

  • Rueckschloss U, Isenberg G (2001) Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. J Physiol 537:363–370

    Article  CAS  PubMed  Google Scholar 

  • Rybakova IN, Ervasti JM (2005) Identification of spectrin-like repeats required for high affinity utrophin–actin interaction. J Biol Chem 280:23018–23023

    Article  CAS  PubMed  Google Scholar 

  • Rybakova IN, Patel JR, Ervasti JM (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150:1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Rybakova IN, Patel JR, Davies KE, Yurchenco PD, Ervasti JM (2002) Utrophin binds laterally along actin filaments and can couple costameric actin with sarcolemma when overexpressed in dystrophin-deficient muscle. Mol Biol Cell 13:1512–1521

    Article  CAS  PubMed  Google Scholar 

  • Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, Stout AL, Sanger JM (2006) How to build a myofibril. J Muscle Res Cell Motil 26:1343–1354

    Article  Google Scholar 

  • Schevzov G, Bryce NS, Monte-Baldonado R, Joya J, Lin JJ, Hardeman E, Weinberger R, Gunning P (2005a) Specific features of neuronal size and shape are regulated by tropomyosin isoforms. Mol Biol Cell 16:3425–3437

    Article  CAS  PubMed  Google Scholar 

  • Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O’Neill GM, Yang N, Verrills NM, Kavallaris M, Gunning PW (2005b) Tissue-specific tropomyosin isoform composition. J Histochem Cytochem 53:557–570

    Article  CAS  PubMed  Google Scholar 

  • Schevzov G, Fath T, Vrhovski B, Vlahovich N, Rajan S, Hook J, Joya JE, Lemckert F, Puttur F, Lin JJC et al (2008) Divergent regulation of the sarcomere and the cytoskeleton. J Biol Chem 283:275–283

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RJ, Rothblum KN (1981) Gene switching in myogenesis: differential expression of the chicken actin multigene family. Biochemistry 20:4122–4129

    Article  CAS  PubMed  Google Scholar 

  • Shani M, Zevin-Sonkin D, Saxel O, Carmon Y, Katcoff D, Nudel U, Yaffe D (1981) The correlation between the synthesis of skeletal muscle actin, myosin heavy chain, and myosin light chain and the accumulation of corresponding mRNA sequences during myogenesis. Dev Biol 86:483–492

    Article  CAS  PubMed  Google Scholar 

  • Sjoblom B, Salmazo A, Djinovic-Carugo K (2008) Alpha-actinin structure and regulation. Cell Mol Life Sci 65:2688–2701

    Article  CAS  PubMed  Google Scholar 

  • Sonnemann KJ, Fitzsimons DP, Patel JR, Liu Y, Schneider M, Moss RL, Ervasti J (2006) Cytoplasmic γ-actin is not required for skeletal muscle development but its absence leads to a progressive myopathy. Dev Cell 11:387–397

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Yu ZX, Qian S, Chin TK, Adelstein RS, Ferrans VJ (2000) Nonmuscle myosin II localizes to the Z-lines and intercalated discs of cardiac muscle and to the Z-lines of skeletal muscle. Cell Motil Cytoskelet 46:59–68

    Article  CAS  Google Scholar 

  • Talior-Volodarsky I, Randhawa VK, Zaid H, Klip A (2008) Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation. J Biol Chem 283:25115–25123

    Article  CAS  PubMed  Google Scholar 

  • Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A (2009) Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. Cell Motil Cytoskelet 66:798–815

    Article  CAS  Google Scholar 

  • Tong P, Khayat ZA, Huang C, Patel N, Ueyama A, Klip A (2001) Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest 108:371–381

    CAS  PubMed  Google Scholar 

  • Tsakiridis T, Vranic M, Klip A (1994) Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem 269:29934–29942

    CAS  PubMed  Google Scholar 

  • Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802

    Article  CAS  PubMed  Google Scholar 

  • Vlahovich N, Schevzov G, Nair-Shaliker V, Ilkovski B, Artap ST, Joya JE, Kee AJ, North KN, Gunning PW, Hardeman EC (2008) Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle. Cell Motil Cytoskelet 65:73–85

    Article  CAS  Google Scholar 

  • Vlahovich N, Kee AJ, van der Poel C, Kettle E, Hernandez-Deviez D, Lucas C, Lynch GS, Parton RG, Gunning PW, Hardeman EC (2009) Cytoskeletal tropomyosin Tm5NM1 is required for normal excitation–contraction coupling in skeletal muscle. Mol Biol Cell 20:400–409

    Article  CAS  PubMed  Google Scholar 

  • von Arx P, Bantle S, Soldati T, Perriard JC (1995) Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function. J Cell Biol 131:1759–1773

    Article  Google Scholar 

  • Vrhovski B, Schevzov G, Dingle S, Lessard JL, Gunning P, Weinberger RP (2003) Tropomyosin isoforms from the gamma gene differing at the C-terminus are spatially and developmentally regulated in the brain. J Neurosci Res 72:373–383

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki T, Imamura T, Babendure JL, Lu JC, Sonoda N, Olefsky JM (2007) Myosin 5a is an insulin-stimulated Akt2 (Protein Kinase B{β}) substrate modulating GLUT4 vesicle translocation. Mol Cell Biol 27:5172–5183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna C. Hardeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kee, A.J., Gunning, P.W. & Hardeman, E.C. Diverse roles of the actin cytoskeleton in striated muscle. J Muscle Res Cell Motil 30, 187–197 (2009). https://doi.org/10.1007/s10974-009-9193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-009-9193-x

Keywords

Navigation