Direct visualisation and kinetic analysis of normal and nemaline myopathy actin polymerisation using total internal reflection microscopy

  • Juan-Juan Feng
  • Dmitry S. Ushakov
  • Michael A. Ferenczi
  • Nigel G. Laing
  • Kristen J. Nowak
  • Steven B. MarstonEmail author
Original Paper


Actin filaments were formed by elongation of pre-formed nuclei (short crosslinked actin-HMM complexes) that were attached to a microscope cover glass. By using TIRF illumination we could see actin filaments at high contrast despite the presence of 150 nM TRITC-phalloidin in the solution. Actin filaments showed rapid bending and translational movements due to Brownian motion but the presence of the methylcellulose polymer network constrained lateral movement away from the surface. Both the length and the number of filaments increased with time. Some filaments did not change length at all and some filaments joined up end-to-end (annealing). We did not see any decrease in filament length or filament breakage. For quantitative analysis of polymerisation time course we measured the contour length of all the filaments in a frame at a series of time points and also tracked the length of individual filaments over time. Elongation rate was the same measured by both methods (0.23 μm/min at 0.1 μM actin) and was up to 10 times faster than previously published measurements. The annealed filament population reached 30% of the total after 40 min. Polymerisation rate increased linearly with actin concentration. K on was 2.07 μm min−1 μM−1 (equivalent to 34.5 monomers s−1 μM−1) and critical concentration was less than 20 nM. This technique was used to study polymerisation of a mutant actin (D286G) from a transgenic mouse model. D286G actin elongated at a 40% lower rate than non-transgenic actin.


Actin Polymerisation TIRF microscopy Nemaline myopathy Mutation 



SBM and J-JF were supported by a Grant from the British Heart Foundation. DU is grateful to the The Bionanotechnology Interdisciplinary Research Collaboration (IRC) for funding.

Supplementary material

10974_2009_9178_MOESM1_ESM.pdf (201 kb)
(PDF 200 kb)

(MPG 11868 kb)

(MPG 1410 kb)

(MPG 314 kb)

(MPG 716 kb)


  1. Amann KJ, Pollard TD (2001) Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 98(26):15009–15013. doi: 10.1073/pnas.211556398 PubMedCrossRefGoogle Scholar
  2. Andrianantoandro E, Blanchoin L, Sept D, McCammon JA, Pollard TD (2001) Kinetic mechanism of end-to-end annealing of actin filaments. J Mol Biol 312(4):721–730. doi: 10.1006/jmbi.2001.5005 PubMedCrossRefGoogle Scholar
  3. Brennan KJ, Hardeman EC (1993) Quantitative analysis of the human alpha-skeletal actin gene in transgenic mice. J Biol Chem 268(1):719–725PubMedGoogle Scholar
  4. Coluccio LM, Tilney LG (1984) Phalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol 99(2):529–535. doi: 10.1083/jcb.99.2.529 PubMedCrossRefGoogle Scholar
  5. Corin SJ, Levitt LK, O’Mahoney JV, Joya JE, Hardeman EC, Wade R (1995) Delineation of a slow-twitch-myofiber-specific transcriptional element by using in vivo somatic gene transfer. Proc Natl Acad Sci USA 92(13):6185–6189. doi: 10.1073/pnas.92.13.6185 PubMedCrossRefGoogle Scholar
  6. Feng J-J, Marston SB (2006) *Properties of actin mutations D286G, K336E and D292V that cause skeletal muscle myopathy. Biophys J 90:126aGoogle Scholar
  7. Feng JJ, Marston S (2009) Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscul Disord 19(1):6–16. doi: 10.1016/j.nmd.2008.09.005 PubMedCrossRefGoogle Scholar
  8. Fujiwara I, Takahashi S, Tadakuma H, Funatsu T, Ishiwata S (2002) Microscopic analysis of polymerization dynamics with individual actin filaments. Nat Cell Biol 4(9):666–673. doi: 10.1038/ncb841 PubMedCrossRefGoogle Scholar
  9. Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S, Davies KE, Laing NG, North KN, Cooper ST (2004) Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet 13(16):1727–1743. doi: 10.1093/hmg/ddh185 PubMedCrossRefGoogle Scholar
  10. Ishiwata S, Tadashige J, Masui I, Nishizaka T, Kinosita K Jr (2001) Microscopic analysis of polymerization and fragmentation of individual actin fialments. Results Probl Cell Differen 32:79–94Google Scholar
  11. Kuhn JR, Pollard TD (2005) Real-time measurements of actin filament polymerisation by total internal reflectance microscopy. Biophys J 88:1387–1402. doi: 10.1529/biophysj.104.047399 PubMedCrossRefGoogle Scholar
  12. Kuhn JR, Pollard TD (2007) Single molecule kinetic analysis of actin filament capping. Polyphosphoinositides do not dissociate capping proteins. J Biol Chem 282(38):28014–28024. doi: 10.1074/jbc.M705287200 PubMedCrossRefGoogle Scholar
  13. Marston S, Mirza M, Abdulrazzak H, Sewry C (2004) Functional characterisation of a mutant actin (Met132Val) from a patient with nemaline myopathy. Neuromuscul Disord 14(2):167–174. doi: 10.1016/j.nmd.2003.11.003 PubMedCrossRefGoogle Scholar
  14. Murphy DB, Gray RO, Grasser WA, Pollard TD (1988) Direct demonstration of actin filament annealing in vitro. J Cell Biol 106(6):1947–1954. doi: 10.1083/jcb.106.6.1947 PubMedCrossRefGoogle Scholar
  15. Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K, Donner K, Jacob RL, Hubner C, Oexle K, Anderson JR, Verity CM, North KN, Iannaccone ST, Muller CR, Nurnberg P, Muntoni F, Sewry C, Hughes I, Sutphen R, Lacson AG, Swoboda KJ, Vigneron J, Wallgren-Pettersson C, Beggs AH, Laing NG (1999) Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23(2):208–212. doi: 10.1038/13837 PubMedCrossRefGoogle Scholar
  16. Popp D, Yamamoto A, Maeda Y (2007) Crowded surfaces change annealing dynamics of actin filaments. J Mol Biol 368(2):365–374. doi: 10.1016/j.jmb.2007.01.087 PubMedCrossRefGoogle Scholar
  17. Razzaq A, Schmitz S, Veigel C, Molloy JE, Geeves MA, Sparrow JC (1999) Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem 274(40):28321–28328. doi: 10.1074/jbc.274.40.28321 PubMedCrossRefGoogle Scholar
  18. Sept D, Xu J, Pollard TD, McCammon JA (1999) Annealing accounts for the length of actin filaments formed by spontaneous polymerization. Biophys J 77(6):2911–2919. doi: 10.1016/S0006-3495(99)77124-9 PubMedCrossRefGoogle Scholar
  19. Soll DR (1995) The use of computers in understanding how animal cells crawl. Int Rev Cytol 163:43–104. doi: 10.1016/S0074-7696(08)62209-3 PubMedCrossRefGoogle Scholar
  20. Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. J Biol Chem 246:4866–4871PubMedGoogle Scholar
  21. Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci 74:69–117. doi: 10.1016/S0001-8686(97)00040-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Juan-Juan Feng
    • 1
  • Dmitry S. Ushakov
    • 1
  • Michael A. Ferenczi
    • 1
  • Nigel G. Laing
    • 2
  • Kristen J. Nowak
    • 2
  • Steven B. Marston
    • 1
    Email author
  1. 1.NHLI, Cardiovascular Science and Molecular MedicineImperial College LondonLondonUK
  2. 2.Western Australia Institute for Medical ResearchQEII Medical CentreNedlandsAustralia

Personalised recommendations