Skip to main content
Log in

T-tubule profiles in Purkinje fibres of mammalian myocardium

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Purkinje (P)-fibres are cardiac myocytes that are specialized for fast conduction of the electrical signal. P-fibres are usually defined as having the following identifying features: lack of T tubules; frequent lateral cell junctions; deep indentations at the intercalated discs level; the CX40 isoforms of gap junction proteins and, in large mammals, paucity of myofibrils and abundance of glycogen. We have examined the ultrastructure of P-fibres in free running P-strands from right and left ventricles of small (mouse and rat) intermediate (rabbit) and large (dog) size mammals focusing on presence and distribution of the T tubules. In contrast with previous studies, we find that P-fibres do have T tubules which form normal dyadic associations with the sarcoplasmic reticulum and that the frequency of tubules varies with the size of the animal. Profiles of T tubules and dyads are present over short segments of individual P-cells flanked by totally T tubule-free segments. It is thought that lack of T tubules in P-cells is necessary to reduce capacitance and thus accelerate action potential spread. This may not be as important in a small heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ansari A, Ho SY, Anderson RH (1999) Distribution of Purkinje fibres in the sheep heart. Anat Rec 254:92–97

    Article  PubMed  CAS  Google Scholar 

  • Bastide B, Neyses L, Ganten D, Paul M, Willecke K, Traub O (1993) Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions. Circ Res 73:1138–1149

    PubMed  CAS  Google Scholar 

  • Boyden PA, Albala A, Dresdner KP Jr (1989) Electrophysiology and ultrastructure of canine subendocardial Purkinje cells isolated from control and 24-hour infarcted hearts. Circ Res 65:955–970

    PubMed  CAS  Google Scholar 

  • Boyden PA, Pu J, Pinto J, Keurs HE (2000) Ca2+ transients and Ca2+ waves in Purkinje cells: role in action potential initiation. Circ Res 86:448–455

    PubMed  CAS  Google Scholar 

  • Challice CE (1965) Studies on the microstructure of the heart. I. The sinoatrial node and the sino atrial ring bundle. J Royal Micr Soc 85:1–12

    Google Scholar 

  • Clark MG, Gannon BJ, Bodkin N, Patten GS, Berry MN (1978) An improved procedure for the high-yield preparation of intact beating heart cells from the adult rat biochemical and morphologic study. J Mol Cell Cardiol 10:1101–1121

    Article  PubMed  Google Scholar 

  • Colborn GL, Carsey EJ (1972) Electron Microscopy of the sino atrial node of the squirrel monkey. J Mol Cell Cardiol 4:525–536

    Article  PubMed  CAS  Google Scholar 

  • Davis LM, Kanter HL, Beyer EC, Saffitz JE (1994) Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol 24:1124–1132

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg BR, Cohen IS (1983) The ultrastructure of the cardiac Purkinje strand in the dog: a morphometric analysis. Proc R Soc Lond B Biol Sci 217:191–213

    Article  PubMed  CAS  Google Scholar 

  • Fozzard HA (1966) Membrane capacity of the cardiac Purkinje fibre. J Physiol (Lond) 182:255–267

    CAS  Google Scholar 

  • Gros D, Jarry-Guichard T, Ten Velde I, de Maziere A, van Kempen MJ, Davoust J, Briand JP, Moorman AF, Jongsma HJ (1994) Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res 74:839–851

    PubMed  CAS  Google Scholar 

  • Hewett K, Legato MJ, Danilo P Jr, Robinson RB (1983) Isolated myocytes from adult canine left ventricle: Ca2+ tolerance, electrophysiology, and ultrastructure. Am J Physiol 245:H830–H839

    PubMed  CAS  Google Scholar 

  • Hayashi S (1971) Electron microscopy of the heart conduction system of the dog. Arch Histol Jpn 33:67–86

    PubMed  CAS  Google Scholar 

  • Kim S, Baba N (1971) Atrioventricular node and Purkinje fibres of the guinea pig heart. Am J Anat 132:339–353

    Article  PubMed  CAS  Google Scholar 

  • Koprla EC, Nemeseri L (1984) Essential features of endocardial and myocardial morphology: SEM and TEM studies. Acta Physiol Hung 64:65–79

    PubMed  CAS  Google Scholar 

  • Legato MJ (1973) Ultrastructure of the atrial, ventricular and Purkinje cells, with special reference to the genesis of arrhythmias. Circulation 47:178–189

    PubMed  CAS  Google Scholar 

  • Martinez-Palomo A., Alanis J., Benitez D (1970) Transitional cardiac cells of the conductive system of the dog heart. Distinguishing morphological and electrophysiological features. J Cell Biol 47:1–17

    Article  PubMed  CAS  Google Scholar 

  • Mochet M., Moravec J., Guillemot H., Hatt PY (1975) The ultrastructure of rat conductive tissue; an electron microscopic study of the atrioventricular node and the bundle of His. J Mol Cell Cardiol 7:879–889

    Article  PubMed  CAS  Google Scholar 

  • Page E (1967) Tubular systems in Purkinje cells of the cat heart. J Ultrast Res 17:72–83

    Article  CAS  Google Scholar 

  • Purkinje JE (1845) Mikroskopisch-neurologische beobachtunghen. Arch Anat Physiol Wiss Med 12:281–295

    Google Scholar 

  • Sommer JR, Johnson EA (1968) Cardiac muscle: a comparative study of Purkinje fibres and ventricular fibres. J Cell Biol 36:497–526

    Article  PubMed  CAS  Google Scholar 

  • Sommer JR, Johnson EA (1969) Purkinje fibres of the heart examined with the peroxidase reaction. J Cell Biol 37:570–574

    Article  Google Scholar 

  • Sommer JR, Waugh RA (1978) Ultrastructure of heart muscle. Envir Health Perspect 26:159–167

    Article  CAS  Google Scholar 

  • Stuyvers BD, Dun W, Matkovitch S, Sorrentino V, Boyden PA, ter Keurs HEDJ (2005) Ca2+ sparks and waves in canine Purkinje cells. A triple layered system of Ca2+ activation. Circ Res 97:35–43

    Google Scholar 

  • Tawara S (1906) The conduction system of the mammalian heart: an anatomico-histological study of the atrioventricular bundle and the Purkinje fibres. Imperial College Press, London

    Google Scholar 

  • Thornell LE (1975) Morphological characteristic of Purkinje fibres bundles separated from their connective tissue sheath. J Mol Cell Cardiol 7:191–194

    Article  PubMed  CAS  Google Scholar 

  • van Kempen MJ, ten Velde I, Wessels A, Oosthoek PW, Gros D, Jongsma HJ, Moorman AF, Lamers WH (1995) Differential connexin distribution accommodates cardiac function in different species. Microsc Res Tech 31:420–436

    Article  PubMed  Google Scholar 

  • Viragh SZ, Porte A (1973) On the impulse conducting system of the monkey heart (Macaca mulatta). II. The atrio-ventricular node and bundle. Z Zellforsch Mikrosk Anat 145:363–388

    Article  PubMed  CAS  Google Scholar 

  • Walker SM, Schrodt GR, Currier GJ (1975) Evidence for a structural relationship between successive parallel tubules in the SR network and supernumerary striations of Z line material in Purkinje fibres of the chicken, sheep, dog and rhesus monkey heart. J Morph 147:459–473

    Article  PubMed  CAS  Google Scholar 

  • Weidmann S (1952) The electrical constants of Purkinje fibres. J Physiol 118:348–360

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Nosta Glaser for her help during the experiments and photography, Dr. Didier Brochet for his help on the rabbit heart and Dr. Boyden for her very helpful suggestions. This work was supported by NIH grant HL48093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Di Maio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Maio, A., Ter Keurs, H.E. & Franzini-Armstrong, C. T-tubule profiles in Purkinje fibres of mammalian myocardium. J Muscle Res Cell Motil 28, 115–121 (2007). https://doi.org/10.1007/s10974-007-9109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-007-9109-6

Keywords

Navigation