Skip to main content
Log in

Differential sensitivity to perchlorate and caffeine of tetracaine-resistant Ca2+ release in frog skeletal muscle

  • Original Paper
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

In voltage clamped frog skeletal muscle fibres 0.2 mM tetracaine strongly suppresses Ca2+ release. After this treatment Ca2+ release flux lacks its characteristic initial peak and the remaining steady component is strongly reduced when compared with the control condition. We studied the effect of two agonists of Ca2+ release on these tetracaine treated fibres. 8 mM ClO 4 added after tetracaine potentiated release flux from 0.11 ± 0.03 mM s−1 to 0.34 ± 0.07 mM s−1 (n = 6) although without recovery of the peak at any test voltage. The voltage dependence of the increased release was shifted towards more negative potentials (approximately −10 mV). The effects of ClO 4 on charge movement under these conditions showed the previously described characteristic changes consisting in a left shift of its voltage dependence (approximately −9 mV) together with a slower kinetics, both at the ON and OFF transients. Caffeine at 0.5 mM in the presence of the same concentration of tetracaine failed to potentiate release flux independently of the test voltage applied. When the cut ends of the fibre were exposed to a 10 mM BAPTA intracellular solution, in the absence of tetracaine, the peak was progressively abolished. Under these conditions caffeine potentiated release restoring the peak (from 0.63 ± 0.12 mM s−1 to 1.82 ± 0.23 mM s−1) with no effect on charge movement. Taken together the present results suggest that tetracaine is blocking a Ca2+ sensitive component of release flux. It is speculated that the suppressed release includes a component that is dependent on Ca2+ and mainly mediated by the activation of the β ryanodine receptors (the RyR3 equivalent isoform). These receptors are located parajunctionally in the frog and are not interacting with the dihydropyridine receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertocchini F, Ovitt CE, Conti A, Barone V, Schöler HR, Bottinelli R, Reggiani C, Sorrentino V (1997) Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J 16:6956–6963

    Article  PubMed  CAS  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidences for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction inskeletal muscle. J Cell Biol 107:2587–2600

    Article  PubMed  CAS  Google Scholar 

  • Brum G, Píriz N, De Armas R, Ríos R, Stern M, Pizarro G (2003) Differential effects of voltage-dependent inactivation and local anesthetics on kinetic phases of Ca release in frog skeletal muscle. Biophys J 85:245–254

    PubMed  CAS  Google Scholar 

  • Brum G, Ríos E, Stefani E (1988) Effects of extracellular calcium on calcium movements of excitation–contraction coupling in frog skeletal muscle fibres. J Physiol 398:441–473

    PubMed  CAS  Google Scholar 

  • Csernoch L, Huang CL, Szucs G, Kovacs L (1988) Differential effects of tetracaine on charge movements and Ca2+ signals in frog skeletal muscle. J Gen Physiol 92(5):601–612

    Article  PubMed  CAS  Google Scholar 

  • Csernoch L, Szentési P, Sarkozi S, Szegedi C, Jona I, Kovacs LC (1999a) Effects of tetracaine on sarcoplasmic calcium release in mammalian skeletal muscle fibres. J Physiol 515:843–857

    Article  CAS  Google Scholar 

  • Csernoch L, Szentési P, Kovacs L (1999b) Differential effects of caffeine and perchlorate on excitation–contraction coupling in mammalian skeletal muscle. J Physiol 520:217–230

    Article  CAS  Google Scholar 

  • De Armas R, González S, Brum G, Pizarro G (1998) Effects of 2,3-butanedione monoxime on excitation–contraction coupling in frog twitch fibres. J Mus Res Cell Motil 19:961–977

    Article  Google Scholar 

  • Felder E, Franzini-Armstrong C (2002) Type 3 ryanodine receptors of skeletal muscle are segregated in a parajunctional position. Proc Natl Acad Sci USA 99(3):1695–1700

    Article  PubMed  CAS  Google Scholar 

  • Fessenden JD, Wang Y, Moore RA, Chen SR, Allen PD, Pessah IN (2000) Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys J 79(5):2509–2525

    PubMed  CAS  Google Scholar 

  • Francini F, Stefani E (1989) Decay of calcium current in twitch fibers of the frog is influenced by intracellular EGTA. J Gen Physiol 94:953–969

    Article  PubMed  CAS  Google Scholar 

  • González A, Ríos E (1993) Perchlorate enhances transmission in skeletal muscle excitation-contraction coupling. J Gen Physiol 102:373-421

    Article  PubMed  Google Scholar 

  • Herrmann-Frank A, Luttgau HC, Stephenson DG (1999) Caffeine and excitation–contraction coupling in skeletal muscle: a stimulating story. J Muscle Res Cell Motil 20(2):223–237

    Article  PubMed  CAS  Google Scholar 

  • Huang CL (1997) Dual actions of tetracaine on intramembrane charge in amphibian striated muscle. J Physiol 15(501(Pt 3)):589–606

    Article  Google Scholar 

  • Huang CL (1998a) The influence of perchlorate ions on complex charging transients in amphibian striated muscle. J Physiol 506:699–714

    Article  CAS  Google Scholar 

  • Huang CL (1998b) The influence of caffeine on intramembrane charge movements in intact frog striated muscle. J Physiol 512:707–721

    Article  CAS  Google Scholar 

  • Ivanenko A, McKemy DD, Kenyon JL, Airey JA, Sutko JL (1995) Embryonic chicken skeletal muscle cells fail to develop normal excitation–contraction coupling in the absence of the alpha ryanodine receptor. Implications for a two-ryanodine receptor system. J Biol Chem 270(9):4220–4223

    Article  PubMed  CAS  Google Scholar 

  • Jacquemond V, Csernoch L, Klein MG, Schneider MF (1991) Voltage-gated and calcium-gated calcium release during depolarization of skeletal muscle fibers. Biophys J 60(4):867–873

    PubMed  CAS  Google Scholar 

  • Klein MG, Simon BJ, Schneider MF (1990) Effects of caffeine on calcium release from the sarcoplasmic reticulum in frog skeletal muscle fibres. J Physiol 425:599–626

    PubMed  CAS  Google Scholar 

  • Kovacs L, Ríos E, Schneider MF (1983) Measurement and modification of free calcium transients in frog skeletal muscle fibers by metallochromic indicator dye. J Physiol 343:161–196

    PubMed  CAS  Google Scholar 

  • Lüttgau HC, Gottschalk G, Kovacs L, Fuxreiter M (1983) How perchlorate improves excitation–contraction coupling in skeletal muscle fibers. Biophys J 43(2):247–249

    PubMed  Google Scholar 

  • Lüttgau HC, Oetliker H (1968) The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J Physiol 194: 51–74

    PubMed  Google Scholar 

  • Ma J, Anderson K, Shirokov R, Levis R, González A, Karhanek M, Hosey MM, Meissner G, Ríos E (1993) Effects of perchlorate on the molecules of excitation–contraction coupling of skeletal and cardiac muscle. J Gen Physiol 102(3):423–48

    Article  PubMed  CAS  Google Scholar 

  • Melzer W, Ríos E, Schneider MF (1984) Time course of calcium release and removal in skeletal muscle fibres. Biophys J 45: 637–641

    PubMed  CAS  Google Scholar 

  • Murayama T, Ogawa Y (1992) Purification and characterization of two ryanodine-binding protein isoforms from sarcoplasmic reticulum of bullfrog skeletal muscle. J Biochem 112:514–522

    PubMed  CAS  Google Scholar 

  • Murayama T, Ogawa Y (1994) Relationships among ryanodine receptor isoforms expressed in vertebrate skeletal muscle based on immunologic cross-reactivities. J Biochem 116:1117–1122

    PubMed  CAS  Google Scholar 

  • Murayama T, Ogawa Y (2001) Selectively suppressed Ca2+-induced Ca2+ release activity of alpha-ryanodine receptor (alpha-RyR) in frog skeletal muscle sarcoplasmic reticulum: potential distinct modes in Ca2+ release between alpha- and beta-RyR. J Biol Chem 276(4):2953–2960

    Article  PubMed  CAS  Google Scholar 

  • Muschol M, Dasgupta BR, Salzberg BM (1999) Caffeine Interaction with Fluorescent Calcium Indicator Dyes. Biophys J 77: 577–586

    PubMed  CAS  Google Scholar 

  • Oba T (1997) Niflumic acid differentially modulates two types of skeletal ryanodine-sensitive Ca2+-release channels. Am J Physiol 273:C1588–1595

    PubMed  CAS  Google Scholar 

  • O’Brien J, Valdivia HH, Block BA (1995) Physiological differences between the α and β ryanodine receptors of fish skeletal muscle. Biophys J 68:471–482

    PubMed  CAS  Google Scholar 

  • Ogawa Y, Murayama T, Kurebayashi N (1999) Comparison of properties of Ca2+ release channels between rabbit and frog skeletal muscles. Mol Cell Biochem 190(1–2):191–201

    Article  PubMed  CAS  Google Scholar 

  • Pape PC, Jong DS, Chandler WK, Baylor SM (1993) Effect of fura-2 on action potential-stimulated calcium release in cut twitch fibers from frog muscle. J Gen Physiol 102(2):295–332

    Article  PubMed  CAS  Google Scholar 

  • Percival AL, Williams AJ, Kenyon JL, Grinsell MM, Airey JA, Sutko JL (1994) Chicken skeletal muscle ryanodine receptor isoforms: ion channel properties. Biophys J 67(5):1834–1850

    PubMed  CAS  Google Scholar 

  • Pizarro G, Csernoch L, Uribe I, Rodríguez M, Ríos E (1991) The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle. J Gen Physiol 97:913–947

    Article  PubMed  CAS  Google Scholar 

  • Pizarro G, Csernoch L, Uribe I, Ríos E (1992) Differential effects of tetracaine on two kinetic components of calcium release in frog skeletal muscle fibres. J Physiol 457:525–538

    PubMed  CAS  Google Scholar 

  • Pizarro G, Ríos E (2004) How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. J Gen Physiol 124:239–258

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD (2002) Multiple Regions of RyR1 Mediate Functional and Structural Interactions with alfa(1S)-Dihydropyridine Receptors in Skeletal Muscle. Biophys J 83:3230–3244

    Article  PubMed  CAS  Google Scholar 

  • Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD, Franzini-Armstrong C (2000) RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J 79: 2494–2508

    PubMed  CAS  Google Scholar 

  • Ríos E, Pizarro G (1988) The voltage sensors and calcium channels of excitation–contraction coupling. News in Physiol Sci 3: 223–228

    Google Scholar 

  • Rousseau E, Ladine J, Liu QY, Meissner G (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys 267(1):75–86

    Article  PubMed  CAS  Google Scholar 

  • Sarkozi S, Szentesi P, Cseri J, Kovacs L, Csernoch L (1996) Concentration-dependent effects of tetracaine on excitation–contraction coupling in frog skeletal muscle fibres. J␣Muscle Res Cell Motil 17:647–656

    Article  PubMed  CAS  Google Scholar 

  • Schneider MF, Simon BJ (1988) Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle. J␣Physiol 405:727–745

    PubMed  CAS  Google Scholar 

  • Schneider MF, Simon BJ, Szucs G (1987) Depletion of calcium from the sarcoplasmic reticulum during calcium release in frog skeletal muscle. J Physiol 392:167–192

    PubMed  CAS  Google Scholar 

  • Shirokova N, García J, Pizarro G, Ríos E (1996) Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol 107(1):1–18

    Article  PubMed  CAS  Google Scholar 

  • Shirokova N, García J, Ríos E (1998) Local calcium release in mammalian skeletal muscle. J Physiol 512:377–384

    Article  PubMed  CAS  Google Scholar 

  • Shirokova N, Ríos E (1996a) Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle. J Physiol 493:317–339

    CAS  Google Scholar 

  • Shirokova N, Ríos E (1996b) Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration. J Physiol 493:341–356

    CAS  Google Scholar 

  • Shirokova N, Ríos E (1997) Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle. J Physiol 502:3–11

    Article  PubMed  CAS  Google Scholar 

  • Stern M, Pizarro G, Ríos E (1997) Local control model of excitation contraction coupling in skeletal muscle. J Gen Physiol 110:415–440

    Article  PubMed  CAS  Google Scholar 

  • Suda N, Penner R (1994) Membrane repolarization stops caffeine-induced Ca2+ release in skeletal muscle cells. Proc Nat Acad Science (USA) 91:5725–5729

    Article  CAS  Google Scholar 

  • Sutko JL, Airey JA (1996) Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev 76:1027–1071

    PubMed  CAS  Google Scholar 

  • Weber A, Herz R (1968) The relationship between caffeine contracture of the inatact muscle and the effect of caffeine on reticulum. J Gen Physiol 52:750–759

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Jones R, Meissner G (1993) Effects of local anesthetics on single channel behavior of skeletal muscle calcium release channel. J Gen Physiol 101:207–233

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Pan Z, Takeshima H, Wu C, Nagaraj RY, Ma JJ, Cheng H (2001) RyR3 Amplifies RyR1-mediated Ca2+ -induced Ca2+ - Release in Neonatal Mammalian Skeletal Muscle. J␣Biol Chem 276(43):40210–40214

    PubMed  CAS  Google Scholar 

  • Zhou J, Launikonis BS, Ríos E, Brum G (2004) Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation–contraction coupling? J Gen Physiol 124(4):409–428

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Brum G, González A, Launikonis BS, Stern MD, Ríos E (2005) Concerted vs. sequential. Two activation patterns of vast arrays of intracellular Ca2+ channels in muscle. J Gen Physiol 126(4):301–309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Pizarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Píriz, N., Brum, G. & Pizarro, G. Differential sensitivity to perchlorate and caffeine of tetracaine-resistant Ca2+ release in frog skeletal muscle. J Muscle Res Cell Motil 27, 221–234 (2006). https://doi.org/10.1007/s10974-006-9065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-006-9065-6

Keywords

Navigation