Summary
The obligate intracellular parasite Toxoplasma gondii uses gliding motility to migrate across the biological barriers of the host and to invade cells. This unique form of locomotion requires an intact actin cytoskeleton and involves at least one motor protein (TgMyoA) that belongs to the class XIV of the myosin superfamily. TgMyoA is anchored in the inner membrane complex and is essential for the gliding motion, host cell invasion and egress of T. gondii tachyzoites. TgMyoD is the smallest T. gondii myosin and is structurally very closely related to TgMyoA. We show here that TgMyoD exhibits similar transient kinetic properties as the fast single-headed TgMyoA. To determine if TgMyoD also contributes to parasite gliding motility, the TgMyoD gene was disrupted by double homologous recombination. In contrast to TgMyoA, TgMyoD gene is dispensable for tachyzoite propagation and motility. Parasites lacking TgMyoD glide normally and their virulence is not compromised in mice. The fact that TgMyoD is predominantly expressed in bradyzoites explains the absence of a phenotype observed with myodko in tachyzoites and does not exclude a role of this motor in gliding that would be restricted to the cyst forming but nevertheless motile stage of the parasite.
Similar content being viewed by others
Abbreviations
- BDM:
-
butanedione monoxime
- mant ATP:
-
N-methylanthraniloyl derivatives of 2′deoxy-ATP
References
Bergman LW, Kaiser K, Fujioka H, Coppens I, Daly TM, Fox S, Matuschewski K, Nussenzweig V and Kappe SH (2003) Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J Cell Sci 116(Pt 1): 39–49
Carruthers VB and Sibley LD (1997) Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73(2): 114–123
Cremo CR and Geeves MA (1998) Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry 37: 1969–1978
Delbac F, Sanger A, Neuhaus EM, Stratmann R, Ajioka JW, Toursel C, Herm-Gotz A, Tomavo S, Soldati T and Soldati D (2001) Toxoplasma gondii myosins B/C: one gene, two tails, two localizations, and a role in parasite division. J Cell Biol 155(4): 613–623
Dobrowolski J and Sibley LD (1997) The role of the cytoskeleton in host cell invasion by Toxoplasma gondii. Behring Inst Mitt 99: 90–96
Dobrowolski JM, Carruthers VB and Sibley LD (1997) Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 26(1): 163–173
Dobrowolski JM and Sibley LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84(6): 933–939
Donald R, Carter D, Ullman B and Roos DS (1996) Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem 271(24): 14010–14019
Gaskins E, Gilk S, DeVore N, Mann T, Ward G and Beckers C (2004) Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol 165(3): 383–393
Geeves MA and K.C. H. (1999). Structural mechanism of muscle contraction. Ann Rev Biochem 68: 687–728
Hakansson S, Morisaki H, Heuser J and Sibley LD (1999) Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Mol Biol Cell 10(11): 3539–3547
Heintzelman MB and Schwartzman JD (1997) A novel class of unconventional myosins from Toxoplasma gondii. J Mol Biol 271(1): 139–146
Herm-Goetz A, Weiss S, Stratmann R, Fujita-Becker S, Ruff C, Meyhofer E, Soldati T, Manstein DJ, Geeves MA and Soldati D (2002) Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. Embo J 21(9): 2149–2158
Hettmann C, Herm A, Geiter A, Frank B, Schwarz E, Soldati T and Soldati D (2000) A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Mol Biol Cell 11(4): 1385–1400
Keeley A and Soldati D (2004) The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa Trends Cell. Biology 14: 528–532
Kurzawa SE, Manstein DJ and Geeves MA (1997) Dictyostelium discoideum myosin II: characterization of functional myosin motor fragments. Biochemistry 36: 317–323
Leammli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophageT4. Nature 227: 680–685
Lew AE, Dluzewski AR, Johnson AM and Pinder JC (2002) Myosins of Babesia bovis: molecular characterisation, erythrocyte invasion, and phylogeny. Cell Motil Cytoskeleton 52(4): 202–220
Luft BJ and Remington JS (1992) Toxoplasmic encephalitis in AIDS. Clin Infect Dis 15(2): 211–222
Malnasi-Csizmadia A, Pearson DS, Kovacs M, Woolley RJ, Geeves MA and Bagshaw CR (2001) Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue.Biochemistry 40(42): 12727–12737
Margos G, Side’n-Kiamos I, Fowler RE, Gillman TR, Spaccapelo R, Lycett G, Vlachou D, G. P, Eling WM, Mitchell GH, et al. (2000) Myosin A expressions in sporogonic stages of Plasmodium. Molecular and Biochemical Parasitology 111: 465–469
Matuschewski K, Mota MM, Pinder JC, Nussenzweig V and Kappe SH (2001) Identification of the class XIV myosins Pb-MyoA and Py-MyoA and expression in Plasmodium. Mol Biochem Parasitol 15: 157–161
Meissner M, Schluter D and Soldati D (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298(5594): 837–840
Neuhaus EM, Horstmann H, Almers W, Maniak M and Soldati T (1998) Ethane-freezing/methanol-fixation of cell monolayers: a procedure for improved preservation of structure and antigenicity for light and electron microscopies. J Struct Biol 121(3): 326–342
Norby JG (1971) Studies on a coupled enzyme assay for rate measurements of ATPase reactions. Acta Chem Scand 25(7): 2717–2726
Nyitrai M and Geeves MA (2004) Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci 359(1452): 1867–1877
Ödberg-Ferragut C, Soete M, Engels A, Samyn B, Loyens A, Van Beeumen J, Camus D and Dubremetz J-F (1996) Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa bradyzoite specific surface protein. Mol Biochem Parasitol 82: 237–244
Ostap EM (2002) 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J Muscle Res Cell Motil 23(4): 305–308
Pinder JC, Fowler RE, Dluzewski AR, Bannister LH, Lavin FM, Mitchell GH, Wilson RJ and Gratzer WB (1998) Actomyosin motor in the merozoite of the malaria parasite, plasmodium falciparum: implications for red cell invasion. J Cell Sci 111(Pt 13): 1831–1839
Sibley LD, LeBlanc AJ, Pfefferkorn ER and Boothroyd JC (1992) Generation of a restriction fragment length polymorphism linkage map for Toxoplasma gondii. Genetics 132(4): 1003–1015
Siemankowski RF and White HD (1984) ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. J Biol Chem 259: 5045–5053
Soldati D and Boothroyd JC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260: 349–352
Soldati D, Lassen A, Dubremetz JF and Boothroyd JC (1998) Processing of Toxoplasma ROP1 protein in nascent rhoptries. Mol Biochem Parasitol 96(1–2): 37–48
Weiss S, Rossi R, Pellegrino MA, Bottinelli R and Geeves MA (2001) Differing ADP release rates from myosin heavy chain isoforms define the shortening velocity of skeletal muscle fibers. J Biol Chem 276(49): 45902–45908
Wetzel DM, Hakansson S, Hu K, Roos D and Sibley LD (2003) Actin filament polymerization regulates gliding motility by apicomplexan parasites. Mol Biol Cell 14(2):396–406
Author information
Authors and Affiliations
Corresponding author
Additional information
Both authors contributed equally to the work.
Rights and permissions
About this article
Cite this article
HERM-GÖTZ, A., DELBAC, F., WEISS, S. et al. Functional and biophysical analyses of the class XIV Toxoplasma gondii Myosin D. J Muscle Res Cell Motil 27, 139–151 (2006). https://doi.org/10.1007/s10974-005-9046-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10974-005-9046-1