Skip to main content
Log in

Study on the flow and heat transfer performance of nanofluid in a novel manifold microchannel heat sink combining trapezoidal cross-section and curved corners

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The manifold microchannel heat sink (MMCHS) has been widely used in the field of electronic device cooling due to its high heat dissipation ability. In order to further reduce the flow resistance and improve the heat transfer performance of the microchannel, this paper proposes a novel MMCHS combining trapezoidal cross-section and curved corners and referred to as TC-MMCHS. Al2O3-water nanofluid was used as the coolant. The impacts of the channel cross-sectional shapes, curved corners, trapezoidal structure parameters, and nanoparticle volume fraction on the flow and heat transfer performance of MMCHS were numerically studied. The results showed that, for the same pumping power, compared with the four MMCHS structures, the trapezoidal flat MMCHS (TF-MMCHS) has the lowest thermal resistance and entropy generation, and therefore it exhibits the highest overall performance. The introduction of curved corners significantly reduces the flow resistance, and compared with TF-MMCHS, the pumping power of TC-MMCHS decreases by up to 11.33%. When the bottom angle is equal to 78.7°, the heat transfer characteristics and irreversible losses of TC-MMCHS reach their optimal values. The increase of the channel width is not conducive to the improvement of heat transfer characteristics. However, it can significantly decrease the pumping power by 69.85%. Compared with the conventional MMCHS which uses deionized water as coolant, the introduction of Al2O3–water nanofluid into TC-MMCHS reduces the thermal resistance and entropy generation by 14.22% and 12.36%, respectively. This significantly improves its heat transfer characteristics and reduces irreversible losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

Abbreviations

A :

The heated surface area (m2)

c p :

Specific heat capacity (J kg1 K1)

D :

Hydraulic diameter (μm)

d :

Diameter (μm)

H :

Height (μm)

H S :

Height of the base (μm)

h :

Enthalpy

k :

Thermal conductivity (W m1 K1)

L :

Length (μm)

M :

Molecular mass of water (g mol1)

m :

Total mass flow rate (kg s1)

O :

Avogadro constant

P :

Pressure (Pa)

P P :

Pumping power (W)

Q :

Total heat flux (W)

q :

Heat flux (W cm2)

R t :

Thermal resistance (K W1)

Re:

Reynolds number

r :

Radii of the curved corners (μm)

S gen :

Total entropy generation (W K1)

s :

Entropy (W K1)

T :

Temperature (K)

T bm :

The maximum temperature of substrate (K)

u :

Velocity (m s1)

V :

Total volume flow rate (m3 s1)

W :

Width (μm)

\(\alpha\) :

Bottom angle of the trapezoid (°)

\(\rho\) :

Density (kg m3)

\(\mu\) :

Dynamic viscosity (Pa s)

φ :

Volume fraction of nanoparticles

a :

Top of channel

b :

Bottom of channel

c :

Trapezoidal channel

f :

Fin

l :

Fluid

m :

Manifold

s :

Solid

bl:

Basic fluid

in:

Inlet

nl:

Nanofluid

np:

Nanoparticle

out:

Outlet

References

  1. Deng D, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf. 2021;175:121332. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121332.

    Article  Google Scholar 

  2. Zhang X, Ji Z, Wang J, Lv X. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices. Appl Therm Eng. 2023;235:121294. https://doi.org/10.1016/j.applthermaleng.2023.121294.

    Article  Google Scholar 

  3. Sefiane K, Koşar A. Prospects of heat transfer approaches to dissipate high heat fluxes: opportunities and challenges. Appl Therm Eng. 2022;215:118990. https://doi.org/10.1016/j.applthermaleng.2022.118990.

    Article  CAS  Google Scholar 

  4. Zhang Z, Cui H, Zhao S, Zhao R, Wu T, Liu Z, Liu W. Simulation of heat and mass transfer process in a flat-plate loop heat pipe and experimental comparison. Appl Therm Eng. 2023;220:119705. https://doi.org/10.1016/j.applthermaleng.2022.119705.

    Article  Google Scholar 

  5. Zhang D, Qu H, Lan J, Chen J, Xie Y. Flow and heat transfer characteristics of single jet impinging on protrusioned surface. Int J Heat Mass Transf. 2013;58(1–2):18–28. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.019.

    Article  Google Scholar 

  6. Tan L, Zhang J, Xu H. Jet impingement on a rib-roughened wall inside semi-confined channel. Int J Therm Sci. 2014;86:210–8. https://doi.org/10.1016/j.ijthermalsci.2014.06.037.

    Article  Google Scholar 

  7. Pan Y, Zhao R, Nian Y, Cheng W. Study on the flow and heat transfer characteristics of pin-fin manifold microchannel heat sink. Int J Heat Mass Transf. 2022;183:122052. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122052.

    Article  Google Scholar 

  8. Cui P, Liu Z. Experimental study on flow boiling in ultrahigh-aspect-ratio copper microchannel heat sink. Appl Therm Eng. 2023;223:119975. https://doi.org/10.1016/j.applthermaleng.2023.119975.

    Article  CAS  Google Scholar 

  9. Sharma JP, Sharma A, Jilte RD, Kumar R, Ahmadi MH. A study on thermohydraulic characteristics of fluid flow through microchannels. J Therm Anal Calorim. 2020;140:1–32. https://doi.org/10.1007/s10973-019-08741-4.

    Article  CAS  Google Scholar 

  10. Ma Z, Hu C, Ma L, Chen H, Hou J, Hao N, Wei J. Nanofluids in microchannel heat sinks for efficient flow cooling of power electronic devices. Appl Mater Today. 2023;35:101980. https://doi.org/10.1016/j.apmt.2023.101980.

    Article  Google Scholar 

  11. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9. https://doi.org/10.1109/EDL.1981.25367.

    Article  Google Scholar 

  12. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim. 2019;136:1333–45. https://doi.org/10.1007/s10973-018-7826-2.

    Article  CAS  Google Scholar 

  13. Zhai YL, Xia GD, Liu XF, Li YF. Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis. Int J Heat Mass Transf. 2014;68:224–33. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.086.

    Article  Google Scholar 

  14. Zhu Q, Jin Y, Chen J, Su R, Zhu F, Li H, Wan J, Zhang H, Sun H, Cui Y, Xia H. Computational study of rib shape and configuration for heat transfer and fluid flow characteristics of microchannel heat sinks with fan-shaped cavities. Appl Therm Eng. 2021;195:117171. https://doi.org/10.1016/j.applthermaleng.2021.117171.

    Article  Google Scholar 

  15. Sikdar P, Datta A, Biswas N, Sanyal D. Identifying improved microchannel configuration with triangular cavities and different rib structures through evaluation of thermal performance and entropy generation number. Phys Fluids. 2020;32(3):033601. https://doi.org/10.1063/1.5137842.

    Article  CAS  Google Scholar 

  16. Raja Kuppusamy N, Saidur R, Ghazali NNN, Mohammed HA. Numerical study of thermal enhancement in micro channel heat sink with secondary flow. Int J Heat Mass Transf. 2014;78:216–23. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.072.

    Article  Google Scholar 

  17. Ghani IA, Sidik NAC, Mamat R, Najafi G, Ken TL, Asako Y, Japar WMAA. Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels. Int J Heat Mass Transf. 2017;114:640–55. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.103.

    Article  Google Scholar 

  18. Zhu J, Li X, Wang S, Yang Y, Wang X. Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs. Int J Therm Sci. 2019;146:106068. https://doi.org/10.1016/j.ijthermalsci.2019.106068.

    Article  Google Scholar 

  19. Wang S, Zhu J, An D, Zhang B, Chen L, Yang Y, Zheng S, Wang X. Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design. Int J Therm Sci. 2022;171:107229. https://doi.org/10.1016/j.ijthermalsci.2021.107229.

    Article  Google Scholar 

  20. Zhang Y, Wang S, Ding P. Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. Int J Heat Mass Transf. 2017;113:295–309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092.

    Article  CAS  Google Scholar 

  21. Gunnasegaran P, Mohammed HA, Shuaib NH, Saidur R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transf. 2010;37:1078–86. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014.

    Article  Google Scholar 

  22. Harpole GM, Eninger JE. Micro-channel heat exchanger optimization. IEEE Semicond Therm Meas Manag Symp. 2002. https://doi.org/10.1109/STHERM.1991.152913.

    Article  Google Scholar 

  23. Luo Y, Zhang J, Li W. A comparative numerical study on two-phase boiling fluid flow and heat transfer in the microchannel heat sink with different manifold arrangements. Int J Heat Mass Transf. 2020;156:119864. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119864.

    Article  CAS  Google Scholar 

  24. Lin Y, Luo Y, Li W, Cao Y, Tao Z, Shih TI. Single-phase and two-phase flow and heat transfer in microchannel heat sink with various manifold arrangements. Int J Heat Mass Transf. 2021;171:121118. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121118.

    Article  CAS  Google Scholar 

  25. Chen C, Wang X, Yuan B, Du W, Xin G. Investigation of flow and heat transfer performance of the manifold microchannel with different manifold arrangements. Case Stud Therm Eng. 2022;34:102073. https://doi.org/10.1016/j.csite.2022.102073.

    Article  Google Scholar 

  26. Mandel R, Shooshtari A, Ohadi M. A “2.5-D” modeling approach for single-phase flow and heat transfer in manifold microchannels. Int J Heat Mass Transf. 2018;126:317–30. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.145.

    Article  Google Scholar 

  27. Gilmore N, Timchenko V, Menictas C. Open manifold microchannel heat sink for high heat flux electronic cooling with a reduced pressure drop. Int J Heat Mass Transf. 2020;163:120395. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120395.

    Article  Google Scholar 

  28. Tang K, Lin G, Guo Y, Huang J, Zhang H, Miao J. Simulation and optimization of thermal performance in diverging/converging manifold microchannel heat sink. Int J Heat Mass Transf. 2023;200:123495. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123495.

    Article  Google Scholar 

  29. Cheng J, Xu H, Tang Z, Zhou P. Multi-objective optimization of manifold microchannel heat sink with corrugated bottom impacted by nanofluid jet. Int J Heat Mass Transf. 2023;201:123634. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123634.

    Article  CAS  Google Scholar 

  30. Deymi-Dashtebayaz M, Akhoundi M, Ebrahimi-Moghadam A, Arabkoohsar A, Jabari Moghadam A, Farzaneh-Gord M. Thermo-hydraulic analysis and optimization of Cuo/water nanofluid inside helically dimpled heat exchangers. J Therm Anal Calorim. 2021;143:4009–24. https://doi.org/10.1007/s10973-020-09398-0.

    Article  CAS  Google Scholar 

  31. Nazari M, Karami M, Ashouri M. Comparing the thermal performance of water, ethylene glycol, alumina and CNT nanofluids in CPU cooling: experimental study. Exp Therm Fluid Sci. 2014;57:371–7. https://doi.org/10.1016/j.expthermflusci.2014.06.003.

    Article  CAS  Google Scholar 

  32. Ahammed N, Asirvatham LG, Wongwises S. Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Exp Therm Fluid Sci. 2016;74:81–90. https://doi.org/10.1016/j.expthermflusci.2015.11.023.

    Article  CAS  Google Scholar 

  33. Afshari F, Tuncer AD, Sözen A, Variyenli HI, Khanlari A, Gürbüz EY. A comprehensive survey on utilization of hybrid nanofluid in plate heat exchanger with various number of plates. Int J Num Methods Heat Fluid Flow. 2022;32:241–64. https://doi.org/10.1108/HFF-11-2020-0743.

    Article  Google Scholar 

  34. Yue Y, Mohammadian SK, Zhang Y. Analysis of performances of a manifold microchannel heat sink with nanofluids. Int J Therm Sci. 2015;89:305–13. https://doi.org/10.1016/j.ijthermalsci.2014.11.016.

    Article  CAS  Google Scholar 

  35. Alfaryjat AA, Mohammed HA, Adam NM, Stanciu D, Dobrovicescu A. Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink. Therm Sci Eng Prog. 2018;5:252–62. https://doi.org/10.1016/j.tsep.2017.12.003.

    Article  Google Scholar 

  36. Pourfattah F, Abbasian Arani AA, Babaie MR, Nguyen HM, Asadi A. On the thermal characteristics of a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation. Int J Heat Mass Transf. 2019;143:118518. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118518.

    Article  CAS  Google Scholar 

  37. Sabaghan A, Edalatpour M, Moghadam MC, Roohi E, Niazmand H. Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: two-phase numerical simulation. Appl Therm Eng. 2016;100:179–89. https://doi.org/10.1016/j.applthermaleng.2016.02.020.

    Article  CAS  Google Scholar 

  38. Pop I, Groșan T, Revnic C, Roșca AV. Unsteady flow and heat transfer of nanofluids, hybrid nanofluids, micropolar fluids and porous media: a review. Therm Sci Eng Prog. 2023;46:102248. https://doi.org/10.1016/j.tsep.2023.102248.

    Article  CAS  Google Scholar 

  39. Yin Y, Shangguan X, Ma X, Zhang J, Qin Y. Influence of corner structure of fuel cell serpentine channel on water removal. Int J Hydrog Energ. 2020;45(54):29812–23. https://doi.org/10.1016/j.ijhydene.2019.08.200.

    Article  CAS  Google Scholar 

  40. Hou Y, Zhang G, Qin Y, Du Q, Jiao K. Numerical simulation of gas liquid two-phase flow in anode channel of low-temperature fuel cells. Int J Hydrog Energ. 2017;42(5):3250–8. https://doi.org/10.1016/j.ijhydene.2016.09.219.

    Article  CAS  Google Scholar 

  41. Azman A, Mukhtar A, Yusoff MZ, Gunnasegaran P, Khai Ching N, Md Yasir ASH. Numerical investigation of flow characteristics and heat transfer efficiency in sawtooth corrugated pipes with Al2O3–CuO/Water hybrid nanofluid. Results Phys. 2023;53:106974. https://doi.org/10.1016/j.rinp.2023.106974.

    Article  Google Scholar 

  42. Garoosi F. Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Technol. 2020;366:788–820. https://doi.org/10.1016/j.powtec.2020.03.032.

    Article  CAS  Google Scholar 

  43. Chai L, Wang L. Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers. Int J Therm Sci. 2018;127:201–12. https://doi.org/10.1016/j.ijthermalsci.2018.01.029.

    Article  Google Scholar 

  44. Drummond KP, Back D, Sinanis MD, Janes DB, Peroulis D, Weibel JA, Garimella SV. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. Int J Heat Mass Transf. 2018;117:319–30. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.015.

    Article  CAS  Google Scholar 

  45. Kose HA, Yildizeli A, Cadirci S. Parametric study and optimization of microchannel heat sinks with various shapes. Appl Therm Eng. 2022;211:118368. https://doi.org/10.1016/j.applthermaleng.2022.118368.

    Article  Google Scholar 

  46. Dai H, Liu Y. Entropy generation analysis on thermo-hydraulic characteristics of microencapsulated phase change slurry in wavy microchannel with porous fins. Appl Therm Eng. 2023;219:119440. https://doi.org/10.1016/j.applthermaleng.2022.119440.

    Article  Google Scholar 

  47. Shi D, Jing Q, Gao T, Zhang D, Xie Y. Flow and heat transfer mechanism of U-shaped channel considering variable cross-section and rotating effects. Int Commun Heat Mass Transf. 2021;129:105701. https://doi.org/10.1016/j.icheatmasstransfer.2021.105701.

    Article  Google Scholar 

  48. Wang Z, Li M, Ren F, Ma B, Yang H, Zhu Y. Sobol sensitivity analysis and multi-objective optimization of manifold microchannel heat sink considering entropy generation minimization. Int J Heat Mass Transf. 2023;208:124046. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124046.

    Article  Google Scholar 

  49. Yang J, Cheng K, Zhang K, Huang C, Huai X. Numerical study on thermal and hydraulic performances of a hybrid manifold microchannel with bifurcations for electronics cooling. Appl Therm Eng. 2023;232:121099. https://doi.org/10.1016/j.applthermaleng.2023.121099.

    Article  Google Scholar 

  50. Lv J, Chang S, Hu C, Bai M, Wang P, Zeng K. Experimental investigation of free single jet impingement using Al2O3-water nanofluid. Int Commun Heat Mass Transf. 2017;88:126–35. https://doi.org/10.1016/j.icheatmasstransfer.2017.08.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.52306194) and Anhui Provincial Natural Science Foundation (No.2308085ME176).

Author information

Authors and Affiliations

Authors

Contributions

Zhiguo Tang performed conceptualization, methodology, investigation, formal analysis, and writing—original draft. Ran Sun performed data curation, writing—original draft, and reviewing manuscript. Kuan Lu provided investigation and validation. Jianping Cheng approved investigation, supervision resources, and methodology. Pei Zhou conducted validation and reviewing manuscript.

Corresponding authors

Correspondence to Jianping Cheng or Pei Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Sun, R., Lu, K. et al. Study on the flow and heat transfer performance of nanofluid in a novel manifold microchannel heat sink combining trapezoidal cross-section and curved corners. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13268-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13268-4

Keywords

Navigation