Skip to main content
Log in

Influence of silver introduction on glass-transition and crystallization processes in As40Se30Te30 glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The investigation of the glass transition process and crystallization, along with the analysis of the crystallization kinetics, is conducted on chalcogenide As40Se30Te30 glass with different concentrations of silver (0, 1, 3, 7, 9, 13, and 17 at.%). The differential scanning calorimetry technique is employed at different heating rates to examine these phenomena. It is demonstrated that the glass undergoes minimal structural changes during the glass transition process. Glass transition temperatures as well as apparent activation energies are determined. Measurements indicated that in certain examined compositions, thermally induced crystallization manifests as a complex process wherein multiple structural units crystallize. In compositions containing 3 and 7 at.% of Ag, two separate crystallization processes are observed. It was shown that the commonly used Johnson–Mehl–Avrami model does not describe crystallization processes of the investigated glass well enough. Additional analysis was conducted using the Sestak-Breggren kinetic model. The apparent activation energies were determined using Kissinger, Mahadevan, and Augis-Bennett models, falling within the range from 93 to 128 kJ mol−1. To track changes in activation energy during the crystallization process itself, isoconversional models such as Vyzovkin, Kissinger–Akahira–Sunose, and Ozawa-Flynn-Wall were employed. It is observed that the introduction of silver contributes to the stabilization of the chalcogenide matrix. Concurrently, the activation energies exhibit a decreasing trend with minor fluctuations. The presence of a singular crystallization peak attributed to the AgAsSe2 structural unit in samples containing over 9 at.% of Ag is a notable feature that holds promise for the further application of the investigated glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Moreno TV, Malacarne LC, Baesso ML, Qu W, Dy E, Xie Z, Fahlman J, Shen J, Astrath NGC. Potentiometric sensors with chalcogenide glasses as sensitive membranes: A short review. J Non-Cryst Solids. 2018;495:8–11. https://doi.org/10.1016/j.jnoncrysol.2018.04.057.

    Article  CAS  Google Scholar 

  2. Zhang XH, Bureau B, Lucas P, Boussard-Pledel C, Lucas J. Glasses for seeing beyond visible. Chem A Eur J. 2008;14:432–511. https://doi.org/10.1002/chem.200700993.

    Article  CAS  Google Scholar 

  3. Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6:824–9. https://doi.org/10.1038/nmat2009.

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Rahim M, Gaber A, Abu-Sehly A, Abdelazim NM. Crystallization study of Sn additive Se–Te chalcogenide alloys. Thermochim Acta. 2013;566:274–7. https://doi.org/10.1016/j.tca.2013.06.009.

    Article  CAS  Google Scholar 

  5. Naqvi SF, Deepika, Saxene NS, Sharma K, Bhandari D. Glass-crystal transformations in Se80−xTe20Agx (x=0, 3, 5, 7 and 9) glasses. J Alloys Compd. 2010;506(2):956–7. https://doi.org/10.1016/j.jallcom.2010.07.128.

    Article  CAS  Google Scholar 

  6. Mohamed M, Salam MNA. Thermal stability and crystallization kinetics of Sb additive of As–Se glasses. J Therm Anal Calorim. 2021;147:8345–414. https://doi.org/10.1007/s10973-021-11109-2.

    Article  CAS  Google Scholar 

  7. Yadav P, Sharma A. Linear and nonlinear optical properties of new Se-based quaternary Se–Sn–(Bi, Te) chalcogenide thin films. Phase Transit. 2014;88(2):109–12. https://doi.org/10.1080/01411594.2014.961152.

    Article  CAS  Google Scholar 

  8. Shaaban E, Ismail YA, Hassan HS. Compositional dependence of the optical properties of amorphous Se80−xTe20Bix thin films using transmittance and reflectance measurements. J Non-Cryst Solids. 2013;376:61–7. https://doi.org/10.1016/j.jnoncrysol.2013.05.024.

    Article  CAS  Google Scholar 

  9. Joraid AA, Al-Marweny AA, Al-Maghrabi MA. Particle size effects on the crystallization kinetics of chalcogenide Se85Te10Sb5 glass. J Therm Anal Calorim. 2021;147(5):3633–713. https://doi.org/10.1007/s10973-021-10790-7.

    Article  CAS  Google Scholar 

  10. Fernandes BJ, Ramesh K, Udayashankar N. Crystallization kinetics of Si20Te80−xBix (0 ≤ x ≤ 3) chalcogenide glasses. Mat Sci Eng B. 2019;246:34–8. https://doi.org/10.1016/j.mseb.2019.05.030.

    Article  CAS  Google Scholar 

  11. Štrbac GR, Petrović JS, Štrbac DD, Čajko K, Lukić-Petrović SR. Glass transition kinetics and fragility index of chalcogenides from Ag–As–S–Se system. J Therm Anal Calorim. 2018;134(1):297–310. https://doi.org/10.1007/s10973-018-7151-9.

    Article  CAS  Google Scholar 

  12. Mohamed M, Abd-el Salam MN, Abdel-Rahim MA, Abdel-Latief AY, Shaaban ER. Effect of Ag addition on crystallization kinetics and thermal stability of As–Se chalcogenide glasses. J Therm Anal Calorim. 2017;132(1):91–11. https://doi.org/10.1007/s10973-017-6873-4.

    Article  CAS  Google Scholar 

  13. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1932;135:16–27.

  14. Avrami M. Kinetics of phase change: I. General Theory J Chem Phys. 1939;7(12):1103–12. https://doi.org/10.1063/1.1750380.

    Article  CAS  Google Scholar 

  15. Avrami M. Kinetics of phase change: II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–13. https://doi.org/10.1063/1.1750631.

  16. Avrami M. Kinetics of phase change: III. Granulation, phase change, and microstructure. J Chem Phys. 1941;9(2):177–8. https://doi.org/10.1063/1.1750872.

  17. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12. https://doi.org/10.1016/0040-6031(71)85051-7.

    Article  CAS  Google Scholar 

  18. Sestak J. Thermophysical properties of solids, their measurements and theoretical analysis. Amsterdam: Elsevier; 1984.

    Google Scholar 

  19. Svoboda R, Málek J. Interpretation of crystallization kinetics results provided by DSC. Thermochim Acta. 2011;526(1–2):237–315. https://doi.org/10.1016/j.tca.2011.10.005.

    Article  CAS  Google Scholar 

  20. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–25. https://doi.org/10.6028/jres.057.026.

    Article  CAS  Google Scholar 

  21. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–5. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  22. Moynihan CT, Easteal AJ, Wilder JA, Tucker JC. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem A. 1974;78(26):2673–5. https://doi.org/10.1021/j100619a008.

    Article  CAS  Google Scholar 

  23. Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–310. https://doi.org/10.1007/BF01912301.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Report Chiba Inst Technol. 1971;16:22–10.

    Google Scholar 

  25. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–410. https://doi.org/10.1002/(SICI)1096-987X(199702)18:3%3c393::AID-JCC9%3e3.0.CO;2-P.

    Article  CAS  Google Scholar 

  26. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–86. https://doi.org/10.1002/1096-987X(20010130)22:2%3c178::AID-JCC5%3e3.0.CO;2-%23.

    Article  CAS  Google Scholar 

  27. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa-Flynn-wall analysis. Thermochim Acta. 1992;203:167–9. https://doi.org/10.1016/0040-6031(92)85193-y.

    Article  CAS  Google Scholar 

  28. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–5. https://doi.org/10.1016/0025-5416(76)90189-0.

    Article  CAS  Google Scholar 

  29. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–24. https://doi.org/10.1016/S0022-3093(86)80084-9.

    Article  CAS  Google Scholar 

  30. Ma B, Jiao Q, Zhang Y, Sun X, Yin G, Zhang X, Ma H, Liu X, Dai S. Optimization of glass properties by substituting AgI with Ag2S in chalcogenide system. Ceram Int. 2019;45:22694–8. https://doi.org/10.1016/j.ceramint.2019.07.305.

    Article  CAS  Google Scholar 

  31. Zheng J, Li L, Yin H, Wang Y, Wei J, Zeng H, Xia F, Chen G. Mutual effects of Ag doping and non-stoichiometric glass forming units on the structural, thermal, and electrical properties of Ag30+xAs28-xSe21Te21 chalcogenide glasses. Ceram Int. 2020;46:22826–30. https://doi.org/10.1016/j.ceramint.2020.06.050.

    Article  CAS  Google Scholar 

  32. Cajko KO, Sekulic DL, Yatskiv R, Vanis J, Lukic-Petrovic S. Impact of Ag concentration in As–S–Se chalcogenide on physical, topological and resistive switching properties. J Non-Cryst Solids. 2023;622:122663–73. https://doi.org/10.1016/j.jnoncrysol.2023.122663.

    Article  CAS  Google Scholar 

  33. Cajko KO, Sekulic DL, Petrovic DM, Labas V, Minarik S, Rakic SJ, Lukic-Petrovic SR. Study of electrical and microstructural properties of Ag-doped As–S–Se chalcogenide glasses. J Non-Cryst Solids. 2021;571:121056–66. https://doi.org/10.1016/j.jnoncrysol.2021.121056.

    Article  CAS  Google Scholar 

  34. Cajko KO, Sekulic DL, Lukic-Petrovic S, Siljegovic MV, Petrovic DM. Temperature-dependent electrical properties and impedance response of amorphous Agx(As40S30Se30)100–x chalcogenide glasses. J Mater Sci Mater Electron. 2017;28:120–8. https://doi.org/10.1007/s10854-016-5500-7.

    Article  CAS  Google Scholar 

  35. Shiryaev VS, Adam JL, Zhang XH, Churbanov MF. Study of characteristic temperatures and nonisothermal crystallization kinetics in AsSeTe Glass System. Sol State Sci. 2005;7(2):209–17. https://doi.org/10.1016/j.solidstatesciences.2004.10.027.

    Article  CAS  Google Scholar 

  36. Vigi R, Štrbac GR, Štrbac DD, Bošak O, Kubliha M. Kinetics of thermally induced processes in Ag doped As40Se30Te30 chalcogenide glass. Chalcogenide Lett. 2024;21:21–37. https://doi.org/10.15251/CL.2024.211.21.

    Article  CAS  Google Scholar 

  37. Svoboda R, Málek J. Amorphous-to-crystalline transition in Te-doped Ge2Sb2Se5 glass. J Therm Anal Calorim. 2014;117:1073–83. https://doi.org/10.1007/s10973-014-3910-4.

    Article  CAS  Google Scholar 

  38. Marques LE, Costa AMC, Crovace MC, Rodrigues ACM, Cabral AA. Influence of particle size onnonisothermal crystallization in a lithium Disilicate glass. Am Ceram Soc. 2015;98:774–80. https://doi.org/10.1111/jace.13380.

    Article  CAS  Google Scholar 

  39. Brandová D, Svoboda R, Málek J. Influence of particle size on crystallization and relaxation behavior of Ge20Se4Te76 glass for infrared optics. J Non-Cryst Solids. 2016;433:75–81. https://doi.org/10.1016/j.jnoncrysol.2015.11.024.

    Article  CAS  Google Scholar 

  40. Svoboda R, Málek J. Thermal behavior in Se–Te chalcogenide system: Interplay of thermodynamics and kinetics. J Chem Phys. 2014;141:224507–16. https://doi.org/10.1063/1.4903543.

    Article  CAS  PubMed  Google Scholar 

  41. Kestur US, Ivanesivic I, Alonzo DE, Taylor LS. Influence of particle size on the crystallization kinetics of amorphous felodipine powders. Powder Technol. 2013;236:197–204. https://doi.org/10.1016/j.powtec.2012.02.010.

    Article  CAS  Google Scholar 

  42. Bychkov E, Bychkov A, Pradel A, Ribes M. Percolation transition in Ag-doped chalcogenide glasses: Comparison of classical percolation and dynamic structure models. Solid State Ionics. 1998;113–115(1–2):691–5. https://doi.org/10.1016/s0167-2738(98)00396-8.

    Article  Google Scholar 

  43. Imran MM, Bhandari D, Saxena NS. Enthalpy recovery during structural relaxation of Se96In4 chalcogenide glass. Physica B. 2001;293(3–4):394–8. https://doi.org/10.1016/s0921-4526(00)00543-3.

    Article  CAS  Google Scholar 

  44. Stehlik S, Kolar J, Frumar M, Wagner T. Phase separation in chalcogenide glasses: The system AgAsSSe. Int J Appl Glass Sci. 2011;2(4):301–7. https://doi.org/10.1111/j.2041-1294.2011.00065.x.

    Article  CAS  Google Scholar 

  45. Kyriazis F, Chrissanthopoulos A, Dracopoulos V, Krbal M, Wagner T, Frumar M, Yannopoulos SN. Effect of silver doping on the structure and phase separation of sulfur-rich As-S glasses: Raman and SEM studies. J Non-Cryst Solids. 2009;355:2010–4.

    Article  CAS  Google Scholar 

  46. Pawaria S, Ahlawat J, Sharma P, Dahiya S, Ohlan A, Punia R, Maan AS. Glass transition and crystallization kinetics of lithium modified zinc borate semiconducting glasses by non-isothermal method. Ceram Int. 2023;49:23276–86. https://doi.org/10.1016/j.ceramint.2023.04.158.

    Article  CAS  Google Scholar 

  47. Pawaria S, Bala M, Duhan H, Deopa N, Dahiya S, Ohlan A, Punia R, Maan AS. Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method. J Therm Anal Calorim. 2022;147:13099–110. https://doi.org/10.1007/s10973-022-11531-0.

    Article  CAS  Google Scholar 

  48. Dua V, Singh K. Crystallization kinetics study of magnesium vanadate glasses using non-isothermal method. J Non-Cryst Solids. 2022;595:121820–6. https://doi.org/10.1016/j.jnoncrysol.2022.121820.

    Article  CAS  Google Scholar 

  49. Mastelaro V, Benazeth S, Dexpert H, Ibanez A, Ollitrault-Fichet R. Structure of the Ag–As–Se chalcogenide glasses: the AsSe, Ag2Se line. J Non-Cryst Solids. 1992;151(1–2):1–12. https://doi.org/10.1016/0022-3093(92)90003-3.

    Article  CAS  Google Scholar 

  50. Wang J, Kou H, Li J, Gu X, Xing LQ, Zhou L. Determination of kinetic parameters during isochronal crystallization of Ti40Zr25Ni8Cu9Be18 metallic glass. J Alloys Compd. 2009;479(1–2):835–45. https://doi.org/10.1016/j.jallcom.2009.01.072.

    Article  CAS  Google Scholar 

  51. Málek J, Černošková E, Švejka R, Šesták J, Van Der Plaats G. Crystallization kinetics of Ge0.3Sb1.4S2.7 glass. Thermochim Acta. 1996;280–281:353–9. https://doi.org/10.1016/0040-6031(95)02653-3.

  52. Gorbachev VM. A solution of the exponential integral in the non-isothermal kinetics for linear heating. J Therm Anal Calorim. 1975;8:349–52. https://doi.org/10.1007/BF01904012.

    Article  CAS  Google Scholar 

  53. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  54. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–72. https://doi.org/10.1038/201068a0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of the Provincial Secretariat for Higher Education and Scientific Research (Contract No. 142-451-3476/2023-01/2) through project “Novel chalcogenide materials for efficient transformation and use of energy”; of the Ministry of Science, Technological Development and Innovation (Contract No. 451-03-65/2024-03/200156) and the Faculty of Technical Sciences, University of Novi Sad through project “Scientific and Artistic Research Work of Researchers in Teaching and Associate Positions at the Faculty of Technical Sciences, University of Novi Sad” (No. 01-3394/1). O. Bošák have been supported by the Slovak Science Foundation, projects APVV DS-FR-19-0036, APVV 22-0146 and by the European Regional Development Fund, Research and Innovation Operational Program, contract no. ITMS2014+: 313011W085.

Author information

Authors and Affiliations

Authors

Contributions

Robert Vigi involved in conceptualization, formal analysis, investigation, writing—original draft. Ondrej Bošak involved in formal analysis, resources, supervision. Dragana D. Strbac involved in conceptualization, methodology, validation, formal analysis, visualization, writing—review and editing. Goran R. Strbac involved in formal analysis, resources, supervision, project administration, validation, writing—review and editing, visualization.

Corresponding author

Correspondence to Goran Štrbac.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigi, R., Bošák, O., Štrbac, D. et al. Influence of silver introduction on glass-transition and crystallization processes in As40Se30Te30 glass. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13253-x

Keywords