Skip to main content
Log in

Kinetics of crystallization of Ni3P phase from amorphous Ni–P powder alloy precursors for preparation of Ni3P-rich alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Due to their high hardness, excellent redox ability, good corrosion resistance and catalytic abilities, the materials with high content of crystalline Ni3P phase are promising candidates for application in various fields. In this work, amorphous and amorphous/nanocrystalline Ni–P powder alloys-precursors were prepared by chemical reduction, and further subjected to crystallization process to obtain Ni3P-rich alloys. Two different Ni–P alloys-precursors (“1” and “2”) were prepared using different reactant ratios. Applying DTA and XRD techniques, the range of thermal stability and thermally induced microstructural transformations of individual Ni–P alloys (precursors of Ni3P-rich alloys) were studied. SEM analysis allowed evaluation of particle size distribution for individual Ni–P samples. Microstructure of the as-prepared and thermally treated samples and mechanism of thermally induced transformations, including the phase composition of completely crystallized material, exhibited significant dependence on the reactant ratio used in the synthesis. Kinetic triplets of individual crystallization steps were deduced by processing the DTA curves, including deconvolution of complex crystallization peaks. Although exhibiting somewhat higher Ni3P crystallization Ea than the Ni–P alloy 1, the Ni–P alloy 2, obtained by use of larger amount of the reducing agent, gave greater content of the Ni3P phase in the crystallized material, around 90% (mass).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Diegle RB, Sorensen NR, Clayton CR, Helfand MA, Yu YC. An XPS investigation into the passivity of an amorphous Ni-20P alloy. J Electrochem Soc. 1988;135:1085–92.

    Article  CAS  Google Scholar 

  2. Shozib IA, Ahmad A, Abdul-Rani AM, Beheshti M, Aliyu AA. A review on the corrosion resistance of electroless Ni-P based composite coatings and electrochemical corrosion testing methods. Corros Rev. 2022;40:1–37.

    Article  CAS  Google Scholar 

  3. Jeong DH, Erb U, Aust KT, Palumbo G. The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings. Scr Mater. 2003;48:1067–72.

    Article  CAS  Google Scholar 

  4. Bakonyi I, Burgstaller A, Socher W, Voitländer J, Tóth-Kádár E, Lovas A, Ebert H, Wachtel E, Willmann N, Liebermann HH. Magnetic properties of electrodeposited, melt-quenched, and liquid Ni-P alloys. Phys Rev B. 1993;47:14961–76.

    Article  CAS  Google Scholar 

  5. Shibli SMA, Anupama VR, Arun PS, Jineesh P, Suji L. Synthesis and development of nano WO3 catalyst incorporated Ni-P coating for electrocatalytic hydrogen evolution reaction. Int J Hydrog Energy. 2016;41:10090–102.

    Article  CAS  Google Scholar 

  6. Tian M, Jian Z, Hai R, Chang F. Non-isothermal crystallization kinetics of amorphous electroless nickel-phosphorus alloy plating. J Therm Anal Calorim. 2023;148:1959–70.

    Article  CAS  Google Scholar 

  7. Agarwala RC, Agarwala V. Electroless alloy/composite coatings: a review. Sadhana. 2003;28:475–93.

    Article  CAS  Google Scholar 

  8. Naderi J, Sarhan AAD. Measure and evaluate the hardness of the electrodeposited nickel-phosphorous (Ni-P) thin film coating on carbon steel alloy for automotive applications. Measurement. 2019;139:490–7.

    Article  Google Scholar 

  9. Gao S, Wu C, Yang X, Cheng J, Kang R. Study on adhesion properties and process parameters of electroless deposited Ni-P alloy for PEEK and its modified materials. Coatings. 2023;13:388.

    Article  CAS  Google Scholar 

  10. Samanta S, Singh C, Banerjee A, Mondal K, Dutta M, Singh SB. Development of amorphous Ni-P coating over API X70 steel for hydrogen barrier application. Surf Coat Technol. 2020;403:126356.

    Article  CAS  Google Scholar 

  11. Deng J, Yang J, Sheng S, Chen H, Xiong G. The study of ultrafine Ni-B and Ni-P amorphous alloy powders as catalysts. J Catal. 1994;150:434–8.

    Article  CAS  Google Scholar 

  12. Suryanarayana C, Inoue A. Iron-based bulk metallic glasses. Int Mater Rev. 2013;58:131–66.

    Article  CAS  Google Scholar 

  13. Zhang H, Yan ZC, Chen Q, Feng Y, Qi ZG, Liu HZ, Li XY, Wang WM. Hardness, magnetism and passivation of Fe-Si-B-Nb glasses. J Non Cryst Solids. 2021;564:120830.

    Article  CAS  Google Scholar 

  14. Wu Y, Zhang Z, Xu K, Dai X, Zhu H, Ni T, Liu Y. Amorphous Ni-P coating modified by laser remelting: the effect of remelted crystallization layer on microhardness and wear resistance. Tribol Int. 2022;176:107884.

    Article  CAS  Google Scholar 

  15. Lee SP, Chen YW. Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine materials. J Mol Catal A Chem. 2000;152:213–23.

    Article  CAS  Google Scholar 

  16. Liebermann HH. Sample preparation: methods and process characterization. In: Luborsky FE, editor. Amorphous metallic alloys. Oxford: Butterworth-Heinemann; 1983. p. 26–41.

    Chapter  Google Scholar 

  17. Liu Y, Niu S, Li F, Zhu Y, He Y. Preparation of amorphous Fe-based magnetic powder by water atomization. Powder Technol. 2011;213:36–40.

    Article  CAS  Google Scholar 

  18. Ji SJ, Sun JC, Yu ZW, Hei ZK, Yan L. On the preparation of amorphous Mg–Ni alloys by mechanical alloying. Int J Hydrog Energy. 1999;24:59–63.

    Article  CAS  Google Scholar 

  19. Russew K, Stojanova L. Most important methods for production of amorphous metallic alloys. In: Glassy metals. Berlin: Springer; 2016. p. 9–29. https://doi.org/10.1007/978-3-662-47882-0_2.

    Chapter  Google Scholar 

  20. Chen Y. Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles. Catal Today. 1998;44:3–16.

    Article  CAS  Google Scholar 

  21. Minić DG, Blagojević VA, Mihajlović LE, Ćosović VR, Minić DM. Kinetics and mechanism of structural transformations of Fe75Ni2Si8B13C2 amorphous alloy induced by thermal treatment. Thermochim Acta. 2011;519:83–9.

    Article  Google Scholar 

  22. Gleiter H. Nanocrystalline materials. Prog Mater Sci. 1989;33:223–315.

    Article  CAS  Google Scholar 

  23. Du SW, Ramanujan RV. Crystallization and magnetic properties of Fe40Ni38B18Mo4 amorphous alloy. J Non-Cryst Solids. 2005;351:3105–13.

    Article  CAS  Google Scholar 

  24. Keong KG, Sha W. Crystallisation and phase transformation behavior of electroless nickel-phosphorus deposits and their engineering properties. Surf Eng. 2002;18:329–43.

    Article  CAS  Google Scholar 

  25. Kumar PS, Nair PK. Studies on crystallization of electroless Ni–P deposits. J Mater Process Tech. 1996;56:511–20.

    Article  Google Scholar 

  26. Staia MH, Puchi ES, Castro G, Ramirez FO, Lewis DB. Effect of thermal history on the microhardness of electroless Ni–P. Thin Solid Films. 1999;355–6:472–9.

    Article  Google Scholar 

  27. Hur KH, Jeong JH, Lee DN. Microstructures and crystallization of electroless Ni–P deposits. J Mater Sci. 1990;25:2573–84.

    Article  CAS  Google Scholar 

  28. Zhao X, Chen X, Wang Y, Song P, Zhang Y. High-efficiency Ni–P catalysts in amorphous and crystalline states for the hydrogen evolution reaction. Sustain Energy Fuels. 2020;4:4733–42.

    Article  CAS  Google Scholar 

  29. Osaka T, Usuda M, Koiwa I, Sawai H. Effect of phosphorus content on the magnetic and electric properties of electroless Ni–P film after heat treatment. Jpn J Appl Phys. 1988;27:1885–9.

    Article  CAS  Google Scholar 

  30. Hamada AS, Sahu P, Porter DA. Indentation property and corrosion resistance of electroless nickel-phosphorus coatings deposited on austenitic high-Mn TWIP steel. Appl Surf Sci. 2015;356:1–8.

    Article  CAS  Google Scholar 

  31. Wang SL. Studies of electroless plating of Ni–Fe–P alloys and the influences of some deposition parameters on the properties of the deposits. Surf Coat Technol. 2004;186:372–6.

    Article  CAS  Google Scholar 

  32. Czagány M, Baumli P, Kaptay G. The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni–P coatings on steel. Appl Surf Sci. 2017;423:160–9.

    Article  Google Scholar 

  33. Šušić MV, Uskoković DP. Crystallization kinetics of amorphous Ni78P22 powders and hydrogen adsorption on both amorphous and crystal alloy powders. J Mater Sci. 1988;23:4076–80.

    Article  Google Scholar 

  34. Keong KG, Sha W, Malinov S. Crystallization and phase transformation behaviour of electroless nickel-phosphorus deposits with low and medium phosphorus contents under continuous heating. J Mater Sci. 2002;37:4445–50.

    Article  CAS  Google Scholar 

  35. Krasteva N, Fotty V, Armyanov S. Thermal stability of Ni–P and Ni–Cu–P amorphous alloys. J Electrochem Soc. 1994;141:2864–7.

    Article  CAS  Google Scholar 

  36. Sun P, Qiu M, Huang J, Zhao J, Chen L, Fu Y, Cui G, Tong Y. Scalable three-dimensional Ni3P-based composite networks for flexible asymmertric supercapacitors. Chem Eng J. 2020;380:122621.

    Article  CAS  Google Scholar 

  37. Kamboj N, Dey RS. Electrochemically grown highly crystalline single-phase Ni3P superstructure accelerating ionic diffusion in rechargeable Ni–Zn battery. J Power Sour. 2021;512:230527.

    Article  CAS  Google Scholar 

  38. Laursen AB, Wexler RB, Whitaker MJ, Izett EJ, Calvinho KUD, Hwang S, Rucker R, Wang H, Li J, Garfunkel E, Greenblatt M, Rappe AM, Dismukes GC. Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: Ni3P, a hydrogen evolution electrocatalyst stable in both acid and alkali. ACS Catal. 2018;8:4408–19.

    Article  CAS  Google Scholar 

  39. Zhu J, Cao L, Li C, Zhao G, Zhu T, Hu W, Sun W, Lu Y. Nanoporous Ni3P evolutionarily structured onto a Ni foam for highly selective hydrogenation of dimethyl oxalate to methyl glycolate. ACS Appl Mater Interfaces. 2019;11:37635–43.

    Article  CAS  PubMed  Google Scholar 

  40. Yu Z, Wang Y, Sun Z, Li X, Wang A, Camaioni DM, Lercher JA. Ni3P as a high-performance catalytic phase for hydrodeoxygenation of phenolic compounds. Green Chem. 2018;20:609–19.

    Article  CAS  Google Scholar 

  41. Minić DM, Šušić MV. Thermal behaviour of 82Ni-18P amorphous powder alloy in hydrogen atmosphere. Mater Chem Phys. 1995;40:281–4.

    Article  Google Scholar 

  42. ICSD Inorganic Crystals Structure Database, Release 2014/2, FIZ Karlsruhe, Eggenstein-Leopoldshafen, Germany.

  43. Lutterotti L. Total pattern fitting for the combined size-strainstress-texture determination in thin film diffraction. Nucl Instrum Meth B. 2010;268:334–40.

    Article  CAS  Google Scholar 

  44. Scherrer P. Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Göttinger Nachrichten Math Phys. 1918;2:98–100.

    Google Scholar 

  45. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    Article  CAS  Google Scholar 

  46. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  47. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  48. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  49. Akahira T, Sunose T. Trans. joint convention of four electrical Institutes, paper no. 246, 1969 research report, Chiba Institute of Technology. J Sci Educ Technol. 1971;16:22–31.

  50. Kaloshkin SD, Tomilin IA. The crystallization kinetics of amorphous alloys. Thermochim Acta. 1996;280(281):303–17.

    Article  Google Scholar 

  51. Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta. 2000;355:239–53.

    Article  Google Scholar 

  52. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min (Metall) Eng. 1939;135:416–42.

    Google Scholar 

  53. Avrami M. Granulation, phase change, and microstructure—kinetics of phase change III. J Chem Phys. 1941;7:177–84.

    Article  Google Scholar 

  54. Kolmogorov AN. On the statistical theory of the crystallization of metals. Bull Acad Sci USSR. 1937;1:355–9.

    Google Scholar 

  55. Vasić M, Minić DM, Blagojević VA, Minić DM. Mechanism of thermal stabilization of Fe89.8Ni1.5Si5.2B3C0.5 amorphous alloy. Thermochim Acta. 2013;562:35–41.

    Article  Google Scholar 

  56. Vasić MM, Žák T, Minić DM. Kinetics and influence of thermally induced crystallization of Fe, Ni-containing phases on thermomagnetic properties of Fe40Ni40B12Si8 amorphous alloy. J Therm Anal Calorim. 2022;147:3543–51.

    Article  Google Scholar 

  57. Vasić MM, Surla R, Minić DM, Radović LJ, Mitrović N, Maričić A, Minić DM. Thermally induced microstructural transformations of Fe72Si15B8V4Cu1 alloy. Metall Mater Trans A. 2017;48:4393–402.

    Article  Google Scholar 

  58. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  59. Vasić MM, Blagojević VA, Begović NN, Žák T, Pavlović VB, Minić DM. Thermally induced crystallization of amorphous Fe40Ni40P14B6 alloy. Thermochim Acta. 2015;614:129–36.

    Article  Google Scholar 

  60. Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  61. Perez-Maqueda LA, Criado JM, Gotor FJ, Malék J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.

    Article  CAS  Google Scholar 

  62. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (contract No. 451-03-47/2023-01/200146). The authors would like to sincerely thank Prof. Dr. Slavko Mentus (Faculty of Physical Chemistry, University of Belgrade, Serbia) for recording the DTA curves, Prof. Nemanja Gavrilov (Faculty of Physical Chemistry, University of Belgrade, Serbia) for performing SEM-EDS measurements, and Ing. Pavla Roupcová, PhD (Institute of Physics of Materials CAS, Brno, Czech Republic) for help with the XRD measurements.

Author information

Authors and Affiliations

Authors

Contributions

M. M. Vasić: Conceptualization, Methodology, Investigation, Writing—original draft, Writing—review & editing, Visualization. D. M. Minić: Conceptualization, Methodology, Investigation, Writing—review & editing, Supervision.

Corresponding author

Correspondence to Milica M. Vasić.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 269 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasić, M.M., Minić, D.M. Kinetics of crystallization of Ni3P phase from amorphous Ni–P powder alloy precursors for preparation of Ni3P-rich alloys. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13242-0

Keywords

Navigation