Skip to main content
Log in

Optimized fire resistance of alkali-activated high-performance concrete by steel fiber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The behavior of alkali-activated ultra-high-performance concrete (A-UHPC) at elevated temperatures is unknown. This study addresses this gap by investigating the behavior of A-UHPC under varying temperatures with steel fiber additions (1%, 2%, and 3%), and considering target temperatures (20 °C, 200 °C, 400 °C, 600 °C, and 800 °C) as design variables. As the results, A-UHPC with steel fibers showed improved fire resistance, suffering less compressive strength loss at 800 °C than fiber-free A-UHPC. High temperatures initially optimized A-UHPC’s microstructure at 200 °C but later caused damage through microstructure propagation. Steel fibers enhanced A-UHPC’s ductility, resulting in ductile failure even at 800 °C. A-UHPC exhibited a unique mechanical degradation pattern under elevated temperatures, distinct from ordinary cement-based concrete. Empirical models accurately predicted its behavior, offering valuable insights for engineers dealing with heavy loads and high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Provis JL, Palomo A, Shi C. Advances in understanding alkali-activated materials. Cem Concr Res. 2015;78:110–25. https://doi.org/10.1016/j.cemconres.2015.04.013.

    Article  CAS  Google Scholar 

  2. Luo B, Wang D, Elchalakani M. Optimised performance of ultrahigh-performance silicomanganese slag concrete by water glass immersion. MAG Concr Res. 2023. https://doi.org/10.1680/jmacr.22.00353.

    Article  Google Scholar 

  3. Luo B, Wang D, Mohamed E. Study on mechanical properties and durability of alkali-activated silicomanganese slag concrete (AASSC). Build Basel. 2022;1:12. https://doi.org/10.3390/buildings12101621.

    Article  Google Scholar 

  4. Wang D, Luo B, Feng Q, Zhang W, Elchalakani M, Xu F. Development of preplaced alkali-activated coral concrete for a marine environment. J Mater Civil Eng. 2024. https://doi.org/10.1061/JMCEE7.MTENG-16226.

    Article  Google Scholar 

  5. Tu W, Zhang M. Behaviour of alkali-activated concrete at elevated temperatures: a critical review. Cem Concr Comp. 2023;138:104961. https://doi.org/10.1016/j.cemconcomp.2023.104961.

    Article  CAS  Google Scholar 

  6. Liu Y, Zhou F, Shen Y, et al. Shear transfer strength of alkali-activated slag-based concrete. J Build Eng. 2023;70:106304. https://doi.org/10.1016/j.jobe.2023.106304.

    Article  Google Scholar 

  7. Barbosa VFF, MacKenzie KJD. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater RES Bull. 2003;38(2):319–31. https://doi.org/10.1016/S0025-5408(02)01022-X.

    Article  CAS  Google Scholar 

  8. Thomas RJ, Ariyachandra E, Lezama D, Peethamparan S. Comparison of chloride permeability methods for alkali-activated concrete. Constr Build Mater. 2018;165:104–11. https://doi.org/10.1016/j.conbuildmat.2018.01.016.

    Article  CAS  Google Scholar 

  9. Li Y, Pimienta P, Pinoteau N, Tan KH. Effect of aggregate size and inclusion of polypropylene and steel fibers on explosive spalling and pore pressure in ultra-high-performance concrete (UHPC) at elevated temperature. Cem Concr Comp. 2019;99:62–71. https://doi.org/10.1016/j.cemconcomp.2019.02.016.

    Article  CAS  Google Scholar 

  10. Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements. Cem Concr Res. 2010;40(9):1341–9. https://doi.org/10.1016/j.cemconres.2010.03.020.

    Article  CAS  Google Scholar 

  11. Dombrowski K, Buchwald A, Weil M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J Mater Sci. 2007;42(9):3033–43. https://doi.org/10.1007/s10853-006-0532-7.

    Article  CAS  Google Scholar 

  12. Rivera OG, Long WR, Weiss CA Jr, et al. Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cem Concr Res. 2016;90:43–51. https://doi.org/10.1016/j.cemconres.2016.09.013.

    Article  CAS  Google Scholar 

  13. Pan Z, Sanjayan JG, Collins F. Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cem Concr Res. 2014;56:182–9. https://doi.org/10.1016/j.cemconres.2013.11.014.

    Article  CAS  Google Scholar 

  14. Zhang XY, Yu R, Zhang JJ, Shui ZH. A low-carbon alkali activated slag based ultra-high performance concrete (UHPC): Reaction kinetics and microstructure development. J Clean Prod. 2022;363:132416. https://doi.org/10.1016/j.jclepro.2022.132416.

    Article  CAS  Google Scholar 

  15. Zhang XY, Fan MX, Zhou YX, Ji DD, Li JH, Yu R. Development of a sustainable alkali activated ultra-high performance concrete (A-UHPC) incorporating recycled concrete fines. J Build Eng. 2023;67:105986. https://doi.org/10.1016/j.jobe.2023.105986.

    Article  Google Scholar 

  16. Pan Z, Tao Z, Cao Y-F, Wuhrer R. Measurement and prediction of thermal properties of alkali-activated fly ash/slag binders at elevated temperatures. Mater Struct. 2018;51(4):108. https://doi.org/10.1617/s11527-018-1233-9.

    Article  CAS  Google Scholar 

  17. Luo Y, Li SH, Klima KM, Brouwers HJH, Yu Q. Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures. Cem Concr Res. 2022;151:106649. https://doi.org/10.1016/j.cemconres.2021.106649.

    Article  CAS  Google Scholar 

  18. Yang Y, Huang L, Xu L, Yu M, Ye H, Chi Y. Temperature-dependent compressive stress-strain behaviors of alkali-activated slag-based ultra-high strength concrete. Constr Build Mater. 2022;357:129250. https://doi.org/10.1016/j.conbuildmat.2022.129250.

    Article  CAS  Google Scholar 

  19. JGJ/T 70-2009. Standardfortestmethodofbasicpropertiesofconstructionmortar. Ministry of Housing and Urban Rural Development of the People's Republic of China, Beijin, China. 2009.

  20. GB/T 50081-2019. Standard for Test Methods for Physical and Mechanical Properties of Concrete. Ministry of Housing and Urban Rural Development of the People's Republic of China, Beijin, China. 2019.

  21. GB/T 2419-2005. Method for determining the flowability of cement mortar. Ministry of Housing and Urban Rural Development of the People's Republic of China, Beijin, China. 2005.

  22. Fan S, Zhang Y, Tan KH. Experimental and analytical studies of reinforced concrete short beams at elevated temperatures. Eng Struct. 2020;212: 110445. https://doi.org/10.1016/j.engstruct.2020.110445.

    Article  Google Scholar 

  23. GB/T 17671–2021. Test method of cement mortar strength. Ministry of Housing and Urban Rural Development of the People's Republic of China, Beijin, China. 2021.

  24. Khoury GA. Effect of fire on concrete and concrete structures. Prog Struct Eng Mat. 2000;2(4):429–47. https://doi.org/10.1002/pse.51.

    Article  Google Scholar 

  25. Hertz KD. Limits of spalling of fire-exposed concrete. Fire Safety J. 2003;38(2):103–16. https://doi.org/10.1016/S0379-7112(02)00051-6.

    Article  Google Scholar 

  26. Liang X, Wu C, Su Y, Chen Z, Li Z. Development of ultra-high performance concrete with high fire resistance. Constr Build Mater. 2018;179:400–12. https://doi.org/10.1016/j.conbuildmat.2018.05.241.

    Article  Google Scholar 

  27. Sasui S, Kim G, Nam J, et al. Effects of waste glass sand on the thermal behavior and strength of fly ash and GGBS based alkali activated mortar exposed to elevated temperature. Constr Build Mater. 2022;316:125864. https://doi.org/10.1016/j.conbuildmat.2021.125864.

    Article  CAS  Google Scholar 

  28. Mohamed AM, Tayeh BA, Abu Aisheh YI, Salih MNA. Exploring the performance of steel fiber reinforced lightweight concrete: a case study review. Case Stud Constr Mat. 2023;18: e01968. https://doi.org/10.1016/j.cscm.2023.e01968.

    Article  Google Scholar 

  29. Zhang H, Li L, Yuan C, Wang Q, Sarker PK, Shi X. Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high temperature exposure and prediction of its residual compressive strength. Constr Build Mater. 2020;262:120924. https://doi.org/10.1016/j.conbuildmat.2020.120924.

    Article  CAS  Google Scholar 

  30. Humur G, Çevik A. Mechanical characterization of lightweight engineered geopolymer composites exposed to elevated temperatures. Ceram Int. 2022;48(10):13634–50. https://doi.org/10.1016/j.ceramint.2022.01.243.

    Article  CAS  Google Scholar 

  31. Alomayri T, Shaikh FUA, Low IM. Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites. Compos Part B-Eng. 2014;60:36–42. https://doi.org/10.1016/j.compositesb.2013.12.036.

    Article  CAS  Google Scholar 

  32. Yu M, Lin H, Wang T, et al. Experimental and numerical investigation on thermal properties of alkali-activated concrete at elevated temperatures. J Build Eng. 2023;74: 106924. https://doi.org/10.1016/j.jobe.2023.106924.

    Article  Google Scholar 

  33. Hachemi S, Khattab M, Benzetta H. Enhancing the performance of concrete after exposure to high temperature by coarse and fine waste fire brick: an experimental study. Constr Build Mater. 2023;368:130356. https://doi.org/10.1016/j.conbuildmat.2023.130356.

    Article  Google Scholar 

  34. Chen Y, Zhang Y, Zhang S, et al. Experimental study on the thermal properties of a novel ultra-high performance concrete reinforced with multi-scale fibers at elevated temperatures. Constr Build Mater. 2023;366:130229. https://doi.org/10.1016/j.conbuildmat.2022.130229.

    Article  CAS  Google Scholar 

  35. Duan P, Yan C, Zhou W, Luo W, Shen C. An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure. Mater Des. 2015;74:125–37. https://doi.org/10.1016/j.matdes.2015.03.009.

    Article  CAS  Google Scholar 

  36. Hassan A, Arif M, Shariq M, Alomayri T, Pereira S. Fire resistance characteristics of geopolymer concrete for environmental sustainability: a review of thermal, mechanical and microstructure properties. Environ Dev Sustain. 2023;25(9):8975–9010. https://doi.org/10.1007/s10668-022-02495-0.

    Article  Google Scholar 

  37. Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res. 2007;37(12):1583–9. https://doi.org/10.1016/j.cemconres.2007.08.021.

    Article  CAS  Google Scholar 

  38. Li S, Zheng W, Zhou W, Jiang Z, Cui Y. Local compression capacity of steel fiber reinforced ultra-high performance concrete containing coarse aggregate. Compos Struct. 2023;318: 117084. https://doi.org/10.1016/j.compstruct.2023.117084.

    Article  CAS  Google Scholar 

  39. Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M. One-part alkali-activated materials: a review. Cem Concr Res. 2018;103:21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.

    Article  CAS  Google Scholar 

  40. Lee NK, Koh KT, An GH, Ryu GS. Influence of binder composition on the gel structure in alkali activated fly ash/slag pastes exposed to elevated temperatures. Ceram Int. 2017;43(2):2471–80. https://doi.org/10.1016/j.ceramint.2016.11.042.

    Article  CAS  Google Scholar 

  41. Pan Z, Tao Z, Cao YF, Wuhrer R, Murphy T. Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cem Concr Comp. 2018;86:9–18. https://doi.org/10.1016/j.cemconcomp.2017.09.011.

    Article  CAS  Google Scholar 

  42. Qu F, Li W, Tao Z, Castel A, Wang K. High temperature resistance of fly ash/GGBFS-based geopolymer mortar with load-induced damage. Mater Struct. 2020;53(4):111. https://doi.org/10.1617/s11527-020-01544-2.

    Article  CAS  Google Scholar 

  43. Lahoti M, Tan KH, Yang E-H. A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater. 2019;221:514–26. https://doi.org/10.1016/j.conbuildmat.2019.06.076.

    Article  CAS  Google Scholar 

  44. Tang J, Ma W, Pang Y, et al. Uniaxial compression performance and stress–strain constitutive model of the aluminate cement-based UHPC after high temperature. Constr Build Mater. 2021;309:125173. https://doi.org/10.1016/j.conbuildmat.2021.125173.

    Article  CAS  Google Scholar 

  45. Zheng W, Li H, Wang Y. Compressive stress–strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures. Constr Build Mater. 2012;35:931–40. https://doi.org/10.1016/j.conbuildmat.2012.05.031.

    Article  Google Scholar 

  46. Xu Z, Li J, Wu P, Wu C. Experimental investigation of triaxial strength of ultra-high performance concrete after exposure to elevated temperature. Constr Build Mater. 2021;295: 123689. https://doi.org/10.1016/j.conbuildmat.2021.123689.

    Article  CAS  Google Scholar 

  47. Abid M, Hou X, Zheng W, Hussain RR. High temperature and residual properties of reactive powder concrete—a review. Constr Build Mater. 2017;147:339–51. https://doi.org/10.1016/j.conbuildmat.2017.04.083.

    Article  CAS  Google Scholar 

  48. Zheng W, Luo B, Wang Y. Stress–strain relationship of steel-fibre reinforced reactive powder concrete at elevated temperatures. Mater Struct. 2015;48(7):2299–314. https://doi.org/10.1617/s11527-014-0312-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by Open Fund of Hunan Engineering Research Center for Intelligent Construction of Fabricated Retaining Structures (22K02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baifu Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Luo, B., Deng, J. et al. Optimized fire resistance of alkali-activated high-performance concrete by steel fiber. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13238-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13238-w

Keywords

Navigation