Skip to main content
Log in

Development and reliability assessment of nano-enhanced novel organic eutectic mixtures as phase change materials for latent heat energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

From the huge unexplored potential of non-paraffin organic compounds with exceptional thermal energy storage characteristics, this study identifies two novel eutectic PCM of margaric acid–behenic acid (MB) and palmitic acid–behenic acid (PB) with a melting temperature of 62.47 °C and 62.62 °C with high melting enthalpies of 170.66 J g-1 and 188.86 J g-1, respectively. To analyse the effects of nano-enhancement and with an objective of improved thermophysical characteristics, multi-walled carbon nanotubes were added over varying concentrations (0.5%, 1% and 1.5% of mass). Initial thermal conductivities of 0.134 W m-1 K-1 and 0.138 W m-1 K-1 were improved with the addition of nanoparticles to 0.312 W m-1 K-1 and 0.305 W m-1 K-1, reporting a 132.8% and 122.46% for MB and PB eutectic mixtures, respectively. Contrary to the usual trend, a highly significant and advantageous increment in melting enthalpy was also observed for both MB and PB eutectic mixtures by 21.9% and 15.8%, respectively. Further, the chemical stability, optical characteristics and thermal stability of the eutectic mixtures were analysed to ensure compatibility towards thermal energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Child M, Koskinen O, Linnanen L, Breyer C. Sustainability guardrails for energy scenarios of the global energy transition. Renew Sustain Energy Rev. 2018;91(March):321–34. https://doi.org/10.1016/j.rser.2018.03.079.

    Article  Google Scholar 

  2. Al-Ghussain L. Global warming: review on driving forces and mitigation. Environ Prog Sustain Energy. 2019;38(1):13–21. https://doi.org/10.1002/ep.13041.

    Article  CAS  Google Scholar 

  3. Elavarasan RM, et al. A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective. IEEE Access. 2020;8:74432–57. https://doi.org/10.1109/ACCESS.2020.2988011.

    Article  Google Scholar 

  4. Qazi A, et al. Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access. 2019;7:63837–51. https://doi.org/10.1109/ACCESS.2019.2906402.

    Article  Google Scholar 

  5. Jurasz J, Canales FA, Kies A, Guezgouz M, Beluco A. A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions. Sol Energy. 2020;195(April 2019):703–24. https://doi.org/10.1016/j.solener.2019.11.087.

    Article  Google Scholar 

  6. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH. Solar energy: potential and future prospects. Renew Sustain Energy Rev. 2018;82(September 2016):894–900. https://doi.org/10.1016/j.rser.2017.09.094.

    Article  Google Scholar 

  7. Sari A, Karaipekli A. Fatty acid esters-based composite phase change materials for thermal energy storage in buildings. Appl Therm Eng. 2012;37:208–16. https://doi.org/10.1016/j.applthermaleng.2011.11.017.

    Article  CAS  Google Scholar 

  8. Liu ZA, Hou J, Mo W, Liu Z, Wang D. Parameters/conFig.urations adaptability and economic evaluation of PCM for reducing energy demands with lightweight buildings under different climates/cities based on orthogonal experiment and EnergyPlus: China-Japan comparison. Therm Sci Eng Prog. 2023;45(May):102143. https://doi.org/10.1016/j.tsep.2023.102143.

    Article  Google Scholar 

  9. Singh P, Sharma RK, Ansu AK, Goyal R. Study on thermal properties of organic phase change materials for energy storage. Mater Today Proc. 2020;28:2353–7. https://doi.org/10.1016/j.matpr.2020.04.640.

    Article  CAS  Google Scholar 

  10. Kenisarin MM. Thermophysical properties of some organic phase change materials for latent heat storage. A review. Sol Energy. 2014;107:553–75. https://doi.org/10.1016/j.solener.2014.05.001.

    Article  CAS  Google Scholar 

  11. Fauzi H, Metselaar HSC, Mahlia TMI, Silakhori M, Ong HC. Thermal characteristic reliability of fatty acid binary mixtures as phase change materials (PCMs) for thermal energy storage applications. Appl Therm Eng. 2015;80:127–31. https://doi.org/10.1016/j.applthermaleng.2015.01.047.

    Article  CAS  Google Scholar 

  12. Fauzi H, Metselaar HSC, Mahlia TMI, Silakhori M, Nur H. Phase change material: optimizing the thermal properties and thermal conductivity of myristic acid/palmitic acid eutectic mixture with acid-based surfactants. Appl Therm Eng. 2013;60(1–2):261–5. https://doi.org/10.1016/j.applthermaleng.2013.06.050.

    Article  CAS  Google Scholar 

  13. Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98. https://doi.org/10.1016/j.rser.2013.08.107.

    Article  CAS  Google Scholar 

  14. Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability. 2018. https://doi.org/10.3390/su10010191.

    Article  Google Scholar 

  15. Zhou D, Zhou Y, Yuan J, Liu Y. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase-change material for latent heat thermal energy storage. J Nanomater. 2020. https://doi.org/10.1155/2020/1648080.

    Article  Google Scholar 

  16. Philip N, Veerakumar C, Sreekumar A. Lauryl alcohol and stearyl alcohol eutectic for cold thermal energy storage in buildings: preparation, thermophysical studies and performance analysis. J Energy Storage. 2020;31(March):101600. https://doi.org/10.1016/j.est.2020.101600.

    Article  Google Scholar 

  17. Dai J, et al. Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement. Renew Energy. 2021;175:748–59. https://doi.org/10.1016/j.renene.2021.05.063.

    Article  CAS  Google Scholar 

  18. Sarı A, Bicer A, Alkan C, Özcan AN. Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell. Sol Energy Mater Sol Cells. 2019;193(November 2018):1–6. https://doi.org/10.1016/j.solmat.2019.01.003.

    Article  CAS  Google Scholar 

  19. Govindaraja G, Duraipandi S, Sreekumar A. Development and characterization of a novel eutectic mixture with stearyl alcohol and adipic acid for hot air storage applications. J Energy Storage. 2023;61(June):106708. https://doi.org/10.1016/j.est.2023.106708.

    Article  Google Scholar 

  20. Ke H. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy. Appl Therm Eng. 2017;113:1319–31. https://doi.org/10.1016/j.applthermaleng.2016.11.158.

    Article  CAS  Google Scholar 

  21. Amudhalapalli GK, Devanuri JK. Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials—a comprehensive review. Therm Sci Eng Prog. 2022;28(August 2021):101049. https://doi.org/10.1016/j.tsep.2021.101049.

    Article  CAS  Google Scholar 

  22. Karimi Y, Solaimany Nazar AR, Molla-Abbasi P. Synthesis, characterization and application of a magnetic nanoencapsulated PCM in enhancing the natural convection in a cube cavity. Therm Sci Eng Prog. 2024;47(August 2023):102342. https://doi.org/10.1016/j.tsep.2023.102342.

    Article  CAS  Google Scholar 

  23. Hayat MA, Chen Y, Yang Y, Li L, Bevilacqua M. “Enhancing thermal energy storage in buildings with novel functionalised MWCNTs-enhanced phase change materials: towards efficient and stable solutions. Therm Sci Eng Prog. 2024;47(August 2023):102313. https://doi.org/10.1016/j.tsep.2023.102313.

    Article  CAS  Google Scholar 

  24. Mahdi JM, Nsofor EC. Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system. Appl Therm Eng. 2016;108:596–604. https://doi.org/10.1016/j.applthermaleng.2016.07.130.

    Article  CAS  Google Scholar 

  25. Aqib M, Hussain A, Ali HM, Naseer A, Jamil F. Experimental case studies of the effect of Al2O3 and MWCNTs nanoparticles on heating and cooling of PCM. Case Stud Therm Eng. 2020;22(September):100753. https://doi.org/10.1016/j.csite.2020.100753.

    Article  Google Scholar 

  26. Dhivya S, Hussain SI, Jeya Sheela S, Kalaiselvam S. Experimental study on microcapsules of Ag doped ZnO nanomaterials enhanced Oleic-Myristic acid eutectic PCM for thermal energy storage. Thermochim Acta. 2019;671:70–82. https://doi.org/10.1016/j.tca.2018.11.010.

    Article  CAS  Google Scholar 

  27. Kalidasan B, Pandey AK, Saidur R, Kothari R, Sharma K, Tyagi VV. Eco-friendly coconut shell biochar based nano-inclusion for sustainable energy storage of binary eutectic salt hydrate phase change materials. Sol Energy Mater Sol Cells. 2023;262(5):112534. https://doi.org/10.1016/j.solmat.2023.112534.

    Article  CAS  Google Scholar 

  28. Baskar I, Chellapandian M, Jeyasubramanian K. LA-PA eutectic/nano-SiO2 composite phase change material for thermal energy storage application in buildings. Constr Build Mater. 2022;338(April):127663. https://doi.org/10.1016/j.conbuildmat.2022.127663.

    Article  CAS  Google Scholar 

  29. Jacob J, Pandey AK, Rahim NA, Selvaraj J, Paul J. Multi-wall carbon nanotubes tailored eutectic composites for solar energy harvesting. Energy. 2024;288(November 2023):129777. https://doi.org/10.1016/j.energy.2023.129777.

    Article  CAS  Google Scholar 

  30. Dinesh R, Hussain SI, Roseline AA, Kalaiselvam S. Experimental investigation on heat transfer behavior of the novel ternary eutectic PCM embedded with MWCNT for thermal energy storage systems. J Therm Anal Calorim. 2021;145(6):2935–49. https://doi.org/10.1007/s10973-020-09726-4.

    Article  CAS  Google Scholar 

  31. Sheikholeslami M. Analyzing melting process of paraffin through the heat storage with honeycomb conFig.uration utilizing nanoparticles. J Energy Storage. 2022;52(1):104954. https://doi.org/10.1016/j.est.2022.104954.

    Article  Google Scholar 

  32. Chaatouf D, Raillani B, Salhi M, Amraqui S, Mezrhab A. Experimental and numerical study of a natural convection indirect solar dryer with PCM tubes: dynamic, thermal and nutritional quality analysis. Sol Energy. 2023;264(September):111975. https://doi.org/10.1016/j.solener.2023.111975.

    Article  CAS  Google Scholar 

  33. Sheikholeslami M. Numerical investigation for concentrated photovoltaic solar system in existence of paraffin equipped with MWCNT nanoparticles. Sustain Cities Soc. 2023;99(August):104901. https://doi.org/10.1016/j.scs.2023.104901.

    Article  Google Scholar 

  34. Sheikholeslami M, Khalili Z, Mousavi SJ. Influence of self-cleaning coating on performance of photovoltaic solar system utilizing mixture of phase change material and Graphene nanoparticle. J Build Eng. 2023;77(August):107540. https://doi.org/10.1016/j.jobe.2023.107540.

    Article  Google Scholar 

  35. Bharathiraja R, Ramkumar T, Karthick L, Mohanraj M. Performance investigation on flat plate solar water collector using a hybrid nano-enhanced phase change material (PCM). J Energy Storage. 2024;86(PA):111163. https://doi.org/10.1016/j.est.2024.111163.

    Article  Google Scholar 

  36. Sheikholeslami M. Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting. Sol Energy Mater Sol Cells. 2022;245(May):111856. https://doi.org/10.1016/j.solmat.2022.111856.

    Article  CAS  Google Scholar 

  37. Alqsair UF. Enhancement the production of trays solar still via nano phase change material and preheating feed-water. Case Stud Therm Eng. 2024;53(November):103822. https://doi.org/10.1016/j.csite.2023.103822.

    Article  Google Scholar 

  38. Sheikholeslami M, Khalili Z, Scardi P, Ataollahi N. Environmental and energy assessment of photovoltaic-thermal system combined with a reflector supported by nanofluid filter and a sustainable thermoelectric generator. J Clean Prod. 2024;438(September 2023):140659. https://doi.org/10.1016/j.jclepro.2024.140659.

    Article  CAS  Google Scholar 

  39. Sheikholeslami M, Khalili Z. Solar photovoltaic-thermal system with novel design of tube containing eco-friendly nanofluid. Renew Energy. 2024;222(November):119862. https://doi.org/10.1016/j.renene.2023.119862.

    Article  CAS  Google Scholar 

  40. Sheikholeslami M, Khalili Z. Environmental and energy analysis for photovoltaic-thermoelectric solar unit in existence of nanofluid cooling reporting CO2 emission reduction. J Taiwan Inst Chem Eng. 2024;156(January):105341. https://doi.org/10.1016/j.jtice.2023.105341.

    Article  CAS  Google Scholar 

  41. Gbabode G, Negrier P, Mondieig D, Moreno E, Calvet T, Angel M. Polymorphism and solid-state miscibility in the pentadecanoic acid–heptadecanoic acid binary system. Chem Phys Lipids. 2008;154:68–77. https://doi.org/10.1016/j.chemphyslip.2008.04.008.

    Article  CAS  PubMed  Google Scholar 

  42. Sari A, Kaygusuz K. Thermal performance of palmitic acid as a phase change energy storage material. Energy Convers Manag. 2002;43:863–76.

    Article  CAS  Google Scholar 

  43. Wilson JA, Chickos JS. Vapor pressures and vaporization, sublimation, and fusion enthalpies of some fatty acids. J Chem Eng Data. 2013;58:322–33.

    Article  CAS  Google Scholar 

  44. Nazir H, Batool M, Ali M, Kannan AM. Fatty acids based eutectic phase change system for thermal energy storage applications. Appl Therm Eng. 2018;142:466–75. https://doi.org/10.1016/j.applthermaleng.2018.07.025.

    Article  CAS  Google Scholar 

  45. Yanping Y, Wenquan T, Xiaoling C, Li B. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture. J Chem Eng Data. 2011;56(6):2889–91. https://doi.org/10.1021/je200057j.

    Article  CAS  Google Scholar 

  46. Dilip S, Panda D, Gangawane KM. Performance analysis of hybrid expanded graphite-NiFe2O4 nanoparticles-enhanced eutectic PCM for thermal energy storage. J Energy Storage. 2023;73(PD):109188. https://doi.org/10.1016/j.est.2023.109188.

    Article  Google Scholar 

  47. Kalidasan B, Pandey AK, Saidur R, Tyagi VV. Energizing organic phase change materials using silver nanoparticles for thermal energy storage. J Energy Storage. 2023;58(5):106361. https://doi.org/10.1016/j.est.2022.106361.

    Article  Google Scholar 

  48. Aslfattahi N, et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites. J Energy Storage. 2020;27(November):101115. https://doi.org/10.1016/j.est.2019.101115.

    Article  Google Scholar 

  49. Mishra AK, Lahiri BB, Philip J. Effect of surface functionalization and physical properties of nanoinclusions on thermal conductivity enhancement in an organic phase change material. ACS Omega. 2018;3:9487–504. https://doi.org/10.1021/acsomega.8b01084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yin S, Lu M, Liu C, Tong L, Wang L, Ding Y. Fabrication and thermal properties of capric–stearic acid eutectic/nano-SiO2 phase change material with expanded graphite and CuO for thermal energy storage. J Energy Storage. 2024;77(November):110025. https://doi.org/10.1016/j.est.2023.110025.

    Article  Google Scholar 

  51. Limaye MV, et al. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B. 2009;113(27):9070–6. https://doi.org/10.1021/jp810975v.

    Article  CAS  PubMed  Google Scholar 

  52. Guo W, Zhu Y, Han Y, Wei Y, Luo B. Separation mechanism of fatty acids from waste cooking oil and its flotation performance in iron ore desiliconization. Minerals. 2017. https://doi.org/10.3390/min7120244.

    Article  Google Scholar 

  53. Hekimoğlu G, et al. Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: thermal energy storage and mechanical properties. Energy. 2021. https://doi.org/10.1016/j.energy.2020.119588.

    Article  Google Scholar 

  54. Dhivya S, Hussain SI, JeyaSheela S, Kalaiselvam S. Experimental study on microcapsules of Ag doped ZnO nanomaterials enhanced Oleic-Myristic acid eutectic PCM for thermal energy storage. Thermochim Acta. 2019;671(November 2018):70–82. https://doi.org/10.1016/j.tca.2018.11.010.

    Article  CAS  Google Scholar 

  55. Zormati S, Mhiri H, Aloulou F, Sammouda H. Synthesis and characterization of organoclay and cellulose nanofibers modified with lauric acid eutectic as new phase change material (PCM) used in buildings for thermal energy storage. J Therm Anal Calorim. 2023;148(10):3955–64. https://doi.org/10.1007/s10973-023-12025-3.

    Article  CAS  Google Scholar 

  56. Yu K, Jia M, Liu Y, Yang Y. Binary decanoic acid/polyethylene glycol as a novel phase change material for thermal energy storage: eutectic behaviors and energy conservation evaluation. J Energy Storage. 2023;68(January):107663. https://doi.org/10.1016/j.est.2023.107663.

    Article  Google Scholar 

  57. Wang J, Xie H, Guo Z, Guan L, Li Y. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng. 2014;73(2):1541–7. https://doi.org/10.1016/j.applthermaleng.2014.05.078.

    Article  CAS  Google Scholar 

  58. Chinnasamy V, Cho H. Investigation on thermal properties enhancement of lauryl alcohol with multi-walled carbon nanotubes as phase change material for thermal energy storage. Case Stud Therm Eng. 2022;31(November 2021):101826. https://doi.org/10.1016/j.csite.2022.101826.

    Article  Google Scholar 

  59. Wang Q, et al. Comprehensive performance of composite phase change materials based on ternary eutectic chloride with CuO nanoparticles for thermal energy storage systems. Sol Energy. 2023;250(January):324–34. https://doi.org/10.1016/j.solener.2022.12.051.

    Article  CAS  Google Scholar 

  60. Paul J, et al. Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: recent progresses, challenges, and opportunities. Renew Sustain Energy Rev. 2022;161(November):112321. https://doi.org/10.1016/j.rser.2022.112321.

    Article  CAS  Google Scholar 

  61. Paul J, Kadirgama K, Samykano M, Pandey AK, Tyagi VV. A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials. J Energy Storage. 2022;45(5):103415. https://doi.org/10.1016/j.est.2021.103415.

    Article  Google Scholar 

  62. Laghari IA, Samykano M, Pandey AK, Kadirgama K, Mishra YN. Binary composite (TiO2-Gr) based nano-enhanced organic phase change material: effect on thermophysical properties. J Energy Storage. 2022;51(5):104526. https://doi.org/10.1016/j.est.2022.104526.

    Article  Google Scholar 

  63. Bahiraei F, Fartaj A, Nazri GA. Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers Manag. 2017;153(August):115–28. https://doi.org/10.1016/j.enconman.2017.09.065.

    Article  CAS  Google Scholar 

  64. Panda D, Gangawane KM. materials for enhancement of thermal efficiency of pin-fin heat sink arrangement. J Energy Storage. 2022;60(September):2023. https://doi.org/10.1016/j.est.2023.106644.

    Article  Google Scholar 

  65. Zhang R, Chen D, Chen L, Cao X, Li X, Qu Y. Preparation and thermal properties analysis of fatty acids/1-hexadecanol binary eutectic phase change materials reinforced with TiO2 particles. J Energy Storage. 2022;51(November 2021):104546. https://doi.org/10.1016/j.est.2022.104546.

    Article  Google Scholar 

  66. Fikri MA, et al. Thermal conductivity, reliability, and stability assessment of phase change material (PCM) doped with functionalized multi-wall carbon nanotubes (FMWCNTs). J Energy Storage. 2022;50(5):104676. https://doi.org/10.1016/j.est.2022.104676.

    Article  Google Scholar 

  67. Arshad A, Jabbal M, Yan Y. Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Appl Therm Eng. 2020;181(April):115999. https://doi.org/10.1016/j.applthermaleng.2020.115999.

    Article  CAS  Google Scholar 

  68. Yin S, Lu M, Liu C, Tong L, Wang L, Ding Y. Fabrication and thermal properties of capric–stearic acid eutectic/nano-SiO2 phase change material with expanded graphite and CuO for thermal energy storage. J Energy Storage. 2023;77(November):2024. https://doi.org/10.1016/j.est.2023.110025.

    Article  Google Scholar 

  69. Malinowska-Pańczyk E, Królik K, Skorupska K, Puta M, Martysiak-Żurowska D, Kiełbratowska B. Microwave heat treatment application to pasteurization of human milk. Innov Food Sci Emerg Technol. 2019;52(October 2018):42–8. https://doi.org/10.1016/j.ifset.2018.11.005.

    Article  CAS  Google Scholar 

  70. Chen X, Xiang X, Dai R, Wang Y, Ma P. Effect of low temperature of thermal pretreatment on anaerobic digestion of textile dyeing sludge. Bioresour Technol. 2017;243:426–32. https://doi.org/10.1016/j.biortech.2017.06.138.

    Article  CAS  PubMed  Google Scholar 

  71. Kasinath A, et al. Biochemical assays of intensified methane content in biogas from low-temperature processing of waste activated sludge. Energy. 2022;282(October):2023. https://doi.org/10.1016/j.energy.2023.128855.

    Article  CAS  Google Scholar 

  72. Jamil F, Hassan F, Shoeibi S, Khiadani M. Application of advanced energy storage materials in direct solar desalination: a state of art review. Renew Sustain Energy Rev. 2023;186(August):113663. https://doi.org/10.1016/j.rser.2023.113663.

    Article  CAS  Google Scholar 

  73. Paul L, Ed D. Drying vegetables. 2017. https://ucanr.edu/sites/camasterfoodpreservers/files/340865.pdf.

  74. Bhardwaj AK, Kumar R, Chauhan R, Kumar S. Experimental investigation and performance evaluation of a novel solar dryer integrated with a combination of SHS and PCM for drying chilli in the Himalayan region. Therm Sci Eng Prog. 2020;20(September):100713. https://doi.org/10.1016/j.tsep.2020.100713.

    Article  Google Scholar 

  75. Hadibi T, et al. Energy and enviro-economic analysis of tomato slices solar drying: an experimental approach. Sol Energy. 2023;253(January):250–61. https://doi.org/10.1016/j.solener.2023.02.038.

    Article  Google Scholar 

  76. Dufera LT, Hofacker W, Esper A, Hensel O. Experimental evaluation of drying kinetics of tomato (Lycopersicum Esculentum L.) slices in twin layer solar tunnel dryer. Energy Sustain Dev. 2021;61:241–50. https://doi.org/10.1016/j.esd.2021.03.003.

    Article  Google Scholar 

  77. Usama M, Ali Z, Ndukwu MC, Sathyamurthy R. The energy, emissions, and drying kinetics of three-stage solar, microwave and desiccant absorption drying of potato slices. Renew Energy. 2023;219(P2):119509. https://doi.org/10.1016/j.renene.2023.119509.

    Article  CAS  Google Scholar 

  78. Gilago MC, Mugi VR, Chandramohan VP. Evaluation of drying kinetics of carrot and thermal characteristics of natural and forced convection indirect solar dryer. Results Eng. 2023;18(April):101196. https://doi.org/10.1016/j.rineng.2023.101196.

    Article  Google Scholar 

Download references

Funding

This work was supported by the School of Mechanical Engineering, VIT University Vellore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Kumar Behura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepak, C.N., Behura, A.K. Development and reliability assessment of nano-enhanced novel organic eutectic mixtures as phase change materials for latent heat energy storage. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13235-z

Keywords

Navigation