Skip to main content
Log in

Thermal analysis of humidification–dehumidification desalination system based on evacuated tube solar air heater

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Desalination, which converts saline water into freshwater, has been proposed as a possible alternative to address the worldwide freshwater scarcity problem. The humidification–dehumidification (H–DH) desalination technique can provide appropriate quantity of freshwater to the population residing in water-stressed regions. The aim of the current study is to investigate the solar H–DH desalination system performance which consists of a solar air heater based on double-ends open evacuated tube collector, a packed bed humidifier, and a dehumidifier. The packing material used in humidifier is aspen pads. The performance is assessed based on system overall efficacy, gained output ratio (GOR), yield, and efficacy of humidifier and dehumidifier at three distinct process air flow rates. The average overall system efficacy, yield, and GOR are 11.97%, 4.1 kg day-1, and 0.84, respectively, for open-loop system. The closed-loop system reports better performance at low mass flow rate. The average overall system efficiency, daily yield, and GOR at 100 kg h−1 are 32.48%, 11.9 kg day-1, and 2.44, respectively, for a closed-loop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

ASC :

Overall collector area (m2)

I:

Solar flux (W m−2)

l:

Length of double-ends open evacuated tubes (m)

\(\dot{{m}_{{\text{sw}}}}\) :

Saline water flow rate (kg h−1)

N:

Number of double-ends open evacuated tubes

PP :

Power rating of pump (W)

QSE :

Total energy obtained from solar radiation (W)

TH,in :

Air temperature at inlet of humidifier (\(^\circ{\rm C}\))

TH,sat :

Saturated air DBT at humidifier outlet (\(^\circ{\rm C}\))

TDEC,out :

Air temperature at outlet of direct evaporative cooler (\(^\circ{\rm C}\))

TD,in :

Air temperature at dehumidifier inlet (\(^\circ{\rm C}\))

TD,in,ideal :

Air temperature at inlet of dehumidifier at ideal condition (\(^\circ{\rm C}\))

\({\epsilon }_{{\text{H}}}\) :

Humidifier effectiveness

\({\epsilon }_{{\text{D}}}\) :

Dehumidifier effectiveness

D:

Diameter of double-ends open evacuated tubes (m)

L:

Water latent heat (kJ kg−1)

\(\dot{{m}_{{\text{a}}}}\) :

Process air flow rate (kg/h−1)

Mfw :

Mass of freshwater (kg)

PB :

Power rating of blower (W)

PEF :

Power rating of exhaust fan (W)

QEE :

Total electrical energy (W)

TH,out :

Air temperature at humidifier outlet (\(^\circ{\rm C}\))

TDEC,in :

Air temperature at inlet of direct evaporative cooler (\(^\circ{\rm C}\))

TDEC,out,ideal :

Air temperature at outlet of direct evaporative cooler at ideal condition (\(^\circ{\rm C}\))

TD,out:

Air temperature at dehumidifier outlet (\(^\circ{\rm C}\))

\({\eta }_{\text{o}}\) :

Overall system efficacy (%)

\({\epsilon }_{{\text{DEC}}}\) :

Direct evaporative cooler effectiveness

References

  1. Srivastava S, Yadav A. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power. Sol Energy. 2018;169:302–15. https://doi.org/10.1016/j.solener.2018.03.089.

    Article  CAS  Google Scholar 

  2. Srivastava S, Yadav A. Experimentally investigation of extraction of water vapours with Scheffler reflector through nobel composite desiccant material. Int J Ambient Energy. 2022;43(1):4058–69. https://doi.org/10.1080/01430750.2021.1873850.

    Article  Google Scholar 

  3. Srivastava S, Yadav A. Extraction of water particles from atmospheric air through a Scheffler reflector using different solid desiccants. Int J Ambient Energy. 2020;41(12):1357–69. https://doi.org/10.1080/01430750.2018.1517667.

    Article  Google Scholar 

  4. Tiwari A, Rathod MK, Kumar A. A comprehensive review of solar-driven desalination systems and its advancements. Environ Dev Sustain. 2023. https://doi.org/10.1007/s10668-021-02040-5.

    Article  Google Scholar 

  5. Narayan GP, Sharqawy MH, LienhardV JH, Zubair SM. Thermodynamic analysis of humidification dehumidification desalination cycles. Desalin Water Treat. 2010;16(1–3):339–53. https://doi.org/10.5004/dwt.2010.1078.

    Article  CAS  Google Scholar 

  6. Luo W, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal. Water Res. 2017;109:122–34. https://doi.org/10.1016/j.watres.2016.11.036.

    Article  CAS  PubMed  Google Scholar 

  7. Yuan G, Wang Z, Li H, Li X. Experimental study of a solar desalination system based on humidification-dehumidification process. Desalination. 2011;277(1–3):92–8. https://doi.org/10.1016/j.desal.2011.04.002.

    Article  CAS  Google Scholar 

  8. Santosh R, Yoo CH, Kim YD. Performance evaluation and optimization of humidification–dehumidification desalination system for low-grade waste heat energy applications. Desalination. 2022;526:115516. https://doi.org/10.1016/j.desal.2021.115516.

    Article  CAS  Google Scholar 

  9. Aref L, Fallahzadeh R, Avargani VM. An experimental investigation on a portable bubble basin humidification/dehumidification desalination unit utilizing a closed-loop pulsating heat pipe. Energy Convers Manag. 2021;228:113694. https://doi.org/10.1016/j.enconman.2020.113694.

    Article  Google Scholar 

  10. Rahimi-Ahar Z, Hatamipour MS. Performance evaluation of a solar and vacuum assisted multi-stage humidification-dehumidification desalination system. Process Saf Environ Prot. 2021;148:1304–14. https://doi.org/10.1016/j.psep.2021.03.005.

    Article  CAS  Google Scholar 

  11. Shalaby SM, Kabeel AE, Moharram BM, Fleafl AH. Experimental study of hybrid solar humidification dehumidification system for extremely saline water desalination. Energy Convers Manag. 2021;235:114021. https://doi.org/10.1016/j.enconman.2021.114021.

    Article  Google Scholar 

  12. Thanaiah K, Gumtapure V, Mitiku Tadesse G. Experimental analysis on humidification-dehumidification desalination system using different packing materials with baffle plates. Therm Sci Eng Prog. 2021;22:100831. https://doi.org/10.1016/j.tsep.2020.100831.

    Article  CAS  Google Scholar 

  13. Xiao J, Zheng H, Jin R, Liang S, Wang G, Ma X. Experimental investigation of a bubbling humidification-dehumidification desalination system directly heated by cylindrical Fresnel lens solar concentrator. Sol Energy. 2021;220:873–81. https://doi.org/10.1016/j.solener.2021.04.006.

    Article  Google Scholar 

  14. Dave T, Ahuja V, Krishnan S. Economic analysis and experimental investigation of a direct absorption solar humidification-dehumidification system for decentralized water production. Sustain Energy Technol Assess. 2021;46:101306. https://doi.org/10.1016/j.seta.2021.101306.

    Article  Google Scholar 

  15. Soomro SH, Santosh R, Bak CU, Yoo CH, Kim WS, Kim YD. Effect of humidifier characteristics on performance of a small-scale humidification-dehumidification desalination system. Appl Therm Engvol. 2022;210:118400. https://doi.org/10.1016/j.applthermaleng.2022.118400.

    Article  Google Scholar 

  16. El-Said EMS, Dahab MA, Omara MA, Abdelaziz GB. Humidification-dehumidification solar desalination system using porous activated carbon tubes as a humidifier. Renew Energy. 2022;187:657–70. https://doi.org/10.1016/j.renene.2022.01.023.

    Article  CAS  Google Scholar 

  17. Behnam P, Shafii MB. Examination of a solar desalination system equipped with an air bubble column humidifier, evacuated tube collectors and thermosyphon heat pipes. Desalination. 2016;397:30–7. https://doi.org/10.1016/j.desal.2016.06.016.

    Article  CAS  Google Scholar 

  18. Rajaseenivasan T, Shanmugam RK, Hareesh VM, Srithar K. Combined probation of bubble column humidification dehumidification desalination system using solar collectors. Energy. 2016;116:459–69. https://doi.org/10.1016/j.energy.2016.09.127.

    Article  Google Scholar 

  19. Ayati E, Rahimi-Ahar Z, Hatamipour MS, Ghalavand Y. Water productivity enhancement in variable pressure humidification dehumidification (HDH) desalination systems using heat pump. Appl Therm Eng. 2019;160:114114. https://doi.org/10.1016/j.applthermaleng.2019.114114.

    Article  Google Scholar 

  20. Al-Otoom A, Al-Khalaileh AT. Water desalination using solar continuous humidification–dehumidification process using hygroscopic solutions and rotating belt. Sol Energy. 2020;197:38–49. https://doi.org/10.1016/j.solener.2019.12.075.

    Article  CAS  Google Scholar 

  21. Deniz E, Çınar S. Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification. Energy Convers Manag. 2016;126:12–9. https://doi.org/10.1016/j.enconman.2016.07.064.

    Article  Google Scholar 

  22. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17. https://doi.org/10.1016/0894-1777(88)90043-X.

    Article  Google Scholar 

  23. Tiwari A, Kumar A. A comprehensive review on solar thermal desalination systems based on humidification-dehumidification approach. Clean Technol Environ Policy. 2023. https://doi.org/10.1007/s10098-023-02517-z.

    Article  Google Scholar 

  24. Mehla N, Kumar A. Experimental evaluation of used engine oil based thermal energy storage coupled with novel evacuated tube solar air collector (NETAC). J Energy Storage. 2021;39:102656. https://doi.org/10.1016/j.est.2021.102656.

    Article  Google Scholar 

  25. Santosh R, Lee HS, Ji H, Kim YD. Effect of thermal characteristics on the chemical quality of real-brine treatment through hydrophilic fiber-based low-grade heat-powered humidification-dehumidification process. Water Res. 2023. https://doi.org/10.1016/j.watres.2023.119771.

    Article  PubMed  Google Scholar 

  26. Siddiqui OK, Sharqawy MH, Antar MA, Zubair SM. Performance evaluation of variable pressure humidification-dehumidification systems. Desalination. 2017;409:171–82. https://doi.org/10.1016/j.desal.2017.01.025.

    Article  CAS  Google Scholar 

  27. Abdelaziz GB, Dahab MA, Omara MA, Sharshir SW, Elsaid AM, El-Said EMS. Humidification dehumidification saline water desalination system utilizing high frequency ultrasonic humidifier and solar heated air stream. Therm Sci Eng Prog. 2022;27:101144. https://doi.org/10.1016/j.tsep.2021.101144.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Department of Science and Technology, India, DST/TMD/EWO/WTI/DM/2021/182.

Author information

Authors and Affiliations

Authors

Contributions

Abhishek Tiwari was involved in conceptualization, data curation, investigation, methodology, writing—original manuscript, and writing—review and editing. Amit Kumar was involved in supervision, writing—review and editing, funding acquisition, and visualization.

Corresponding author

Correspondence to Abhishek Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A., Kumar, A. Thermal analysis of humidification–dehumidification desalination system based on evacuated tube solar air heater. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13218-0

Keywords

Navigation