Skip to main content
Log in

Li3NaSiO4 as reversible CO2 absorbent: elucidation of performance-governing factors and regeneration mechanism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In situ reversible CO2 capture by thermally stable materials such as oxides has drawn much attention because of the high operation temperatures of the main CO2 sources, namely thermal power plants and internal combustion engines. In particular, Li4SiO4 features a high CO2 absorption capacity but suffers from slow CO2 absorption at practical CO2 partial pressures (P(CO2)), which can be mitigated through the incorporation of Na to afford Li3NaSiO4. Given that the Li3NaSiO4 regeneration kinetics and the possibility of the corresponding absorption/desorption cycling based on temperature or P(CO2) control remain underexplored, we herein characterized Li3NaSiO4 as a material for reversible CO2 absorption at high temperatures in response to CO2/N2 gas switching, achieving excellent cycling performance at 750 °C. CO2 desorption (i.e., Li3NaSiO4 regeneration) was concluded to occur at the interface between solid Li2SiO3 and molten LiNaCO3, generating a Li3NaSiO4 layer that prevented further desorption at a thickness of > 1 μm and thus resulted in the saturation of the CO2 desorption reaction in the middle. The lack of such saturation during cycling was attributed to the formation of needle-like (short side length ≈ 2 μm) Li2SiO3 particles upon the absorption of CO2 by Li3NaSiO4. Thus, this work paves the way for the development of industrially applicable high-temperature CO2 capture/release materials and thus contributes to the establishment of a greener society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kato M, Nakagawa K. New series of lithium containing complex oxides, lithium silicate, for application as a high temperature CO2 absorbent. J Ceram Soc Jpn. 2001;109:911–4. https://doi.org/10.2109/jcersj.109.1275_911.

    Article  CAS  Google Scholar 

  2. Nair BN, Burwood RP, Goh VJ, Nakagawa K, Yamaguchi T. Lithium based ceramic materials and membranes for high temperature CO2 separation. Prog Mater Sci. 2009;54:511–41. https://doi.org/10.1016/j.pmatsci.2009.01.002.

    Article  CAS  Google Scholar 

  3. Seggiani M, Puccini M, Vitolo S. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: study of the used silica and doping method effects. Int J Greenhouse Gas Control. 2011;5:741–8. https://doi.org/10.1016/j.ijggc.2011.03.003.

    Article  CAS  Google Scholar 

  4. Qui Z, Daying H, Yang L, Qian Y, Zibin Z. Analysis of CO2 sorption/desorption kinetic behavior and reaction mechanisms on Li4SiO4. AIChE J. 2013;59:901–11. https://doi.org/10.1002/aic.13861.

    Article  CAS  Google Scholar 

  5. Puccini M, Seggiani M, Vitolo S. CO2 capture at high temperature and low concentration on Li4SiO4 based sorbents. Chem Eng Trans. 2013;32:1279–84. https://doi.org/10.3303/CET1332214.

    Article  Google Scholar 

  6. Seggiani M, Puccini M, Vitolo S. Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration. Int J Greenhouse Gas Control. 2013;17:25–31. https://doi.org/10.1016/j.ijggc.2013.04.009.

    Article  CAS  Google Scholar 

  7. Shan SY, Li SM, Jia QM, Jiang LH, Wang YM, Peng JH. Impregnation precipitation preparation and kinetic analysis of Li4SiO4-based sorbents with fast CO2 adsorption rate. Ind Eng Chem Res. 2013;52:6941–5. https://doi.org/10.1021/ie400743p.

    Article  CAS  Google Scholar 

  8. Romero-Ibarra IC, Ortiz-Landeros J, Pfeiffer H. Microstructural and CO2 chemisorption analyses of Li4SiO4: effect of surface modification by the ball milling process. Thermochim Acta. 2013;567:118–24. https://doi.org/10.1016/j.tca.2012.11.018.

    Article  CAS  Google Scholar 

  9. Subha PV, Nair BN, Hareesh P, Mohamed AP, Yamaguchi T, Warrier KGK, Hareesh US. Enhanced CO2 absorption kinetics in lithium silicate platelets synthesized by a sol-gel approach. J Mater Chem A. 2014;2:12792–8. https://doi.org/10.1039/C4TA01976H.

    Article  CAS  Google Scholar 

  10. Kim H, Jang HD, Choi M. Facile synthesis of microporous Li4SiO4 with remarkably enhanced CO2 adsorption kinetics. Chem Eng J. 2015;280:132–7. https://doi.org/10.1016/j.cej.2015.05.127.

    Article  CAS  Google Scholar 

  11. Amorim SM, Domenico MD, Dantas TLP, José HJ, Moreira RFPM. Lithium orthosilicate for CO2 capture with high regeneration capacity: kinetic study and modeling of carbonation and decarbonation reactions. Chem Eng J. 2016;283:388–96. https://doi.org/10.1016/j.cej.2015.07.083.

    Article  CAS  Google Scholar 

  12. Subha PV, Nair BN, Mohamed AP, Anilkumar GM, Warrier KG, Yamaguchi T, Hareesh US. Morphologically and compositionally tuned lithium silicate nanorods as high-performance carbon dioxide sorbents. J Mater Chem A. 2016;4:16928–35. https://doi.org/10.1039/C6TA06133H.

    Article  CAS  Google Scholar 

  13. Zhang Q, Peng D, Zhang S, Ye Q, Wu Y, Ni Y. Behaviors and kinetic models analysis of Li4SiO4 under various CO2 partial pressures. AIChE J. 2017;63:2153–64. https://doi.org/10.1002/aic.15627.

    Article  CAS  Google Scholar 

  14. Kaniwa S, Yoshino M, Niwa E, Yashima M, Hashimoto T. Analysis of chemical reaction between Li4SiO4 and CO2 by thermogravimetry under various CO2 partial pressures—clarification of CO2 partial pressure and temperature region of CO2 absorption or desorption. Mater Res Bull. 2017;94:134–9. https://doi.org/10.1016/j.materresbull.2017.05.054.

    Article  CAS  Google Scholar 

  15. Takasu H, Kato Y. Reactivity enhancement of lithium orthosilicate for thermochemical energy storage material usage. Energy Procedia. 2017;131:94–100. https://doi.org/10.1016/j.egypro.2017.09.479.

    Article  CAS  Google Scholar 

  16. Kaniwa S, Yoshino M, Niwa E, Hashimoto T. Evaluation of reaction kinetics of CO2 and Li4SiO4 by thermogravimetry under various CO2 partial pressures. Mater Res Bull. 2018;97:56–60. https://doi.org/10.1016/j.materresbull.2017.08.045.

    Article  CAS  Google Scholar 

  17. Seggiani M, Stefanelli E, Puccini M, Vitolo S. CO2 sorption/desorption performance study on K2CO3-doped Li4SiO4-based pellets. Chem Eng J. 2018;339:51–60. https://doi.org/10.1016/j.cej.2018.01.117.

    Article  CAS  Google Scholar 

  18. Zhao M, Fan H, Yan F, Song Y, He X, Memon MZ, Bhatia SK, Ji G. Kinetic analysis for cyclic CO2 capture using lithium orthosilicate sorbents derived from different silicon precursors. Dalton Trans. 2018;47:9038–50. https://doi.org/10.1039/C8DT01617H.

    Article  CAS  PubMed  Google Scholar 

  19. Lee SC, Kim MJ, Kwon YM, Chae HJ, Cho MS, Park YK, Seo HM, Kim JC. Novel regenerable solid sorbents based on lithium orthosilicate for carbon dioxide capture at high temperatures. Sep Purif Technol. 2019;214:120–7. https://doi.org/10.1016/j.seppur.2018.05.018.

    Article  CAS  Google Scholar 

  20. Kwon YM, Lee SC, Chae HJ, Cho MS, Park YK, Seo HM, Kim JC. Regenerable sodium-based lithium silicate sorbents with a new mechanism for CO2 capture at high temperature. Renew Energy. 2019;144:180–7. https://doi.org/10.1016/j.renene.2018.08.039.

    Article  CAS  Google Scholar 

  21. Yanase I, Sato K, Kobayashi H, Doe T, Naka T. CO2 absorption property of Li4SiO4 in the presence of water vapor at room temperature. Chem Eng J. 2019;356:81–90. https://doi.org/10.1016/j.cej.2018.09.005.

    Article  CAS  Google Scholar 

  22. Hu Y, Liu W, Yang Y, Qu M, Li H. CO2 capture by Li4SiO4 sorbents and their applications: current developments and new trends. Chem Eng J. 2019;359:604–25. https://doi.org/10.1016/j.cej.2018.11.128.

    Article  CAS  Google Scholar 

  23. Wang K, Zhao Y, Clough PT, Zhao P, Anthony EJ. Sorption of CO2 on NaBr co-doped Li4SiO4 ceramics: structural and kinetic analysis. Fuel Process Technol. 2019;195:106143. https://doi.org/10.1016/j.fuproc.2019.106143.

    Article  CAS  Google Scholar 

  24. Li H, Qu M, Hu Y. Preparation of spherical Li4SiO4 pellets by novel agar method for high-temperature CO2 capture. Chem Eng J. 2020;380:122538. https://doi.org/10.1016/j.cej.2019.122538.

    Article  CAS  Google Scholar 

  25. Yang Y, Cao J, Hu Y, Sun J, Yao S, Li Q, Li Z, Zhou S, Liu W. Eutectic doped Li4SiO4 adsorbents using the optimal dopants for highly efficient CO2 removal. J Mater Chem A. 2021;9:14309–18. https://doi.org/10.1039/D1TA01404H.

    Article  CAS  Google Scholar 

  26. Gutiérrez A, Tamayo-Ramos JA, Martel S, Barros R, Bol A, Gennari FC, Larochette PA, Atilhan M, Aparicio S. A theoretical study on CO2 at Li4SiO4 and Li3NaSiO4 surfaces. Phys Chem Chem Phys. 2022;24:13678–89. https://doi.org/10.1039/D2CP00346E.

    Article  PubMed  Google Scholar 

  27. Wang Z, Xu Q, Peng K, Wang Z, Zou X, Cheng H, Lu X. Elucidating the promotion of Na2CO3 in CO2 capture by Li4SiO4. Phys Chem Chem Phys. 2021;23:26696–708. https://doi.org/10.1039/D1CP04507E.

    Article  CAS  PubMed  Google Scholar 

  28. Tong Y, Chen S, Huang X, He Y, Chen J, Qin C. CO2 capture by Li4SiO4 sorbents: from fundamentals to applications. Sep Purif Technol. 2022;301:121977. https://doi.org/10.1016/j.seppur.2022.121977.

    Article  CAS  Google Scholar 

  29. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res. 2012;51:1438–63. https://doi.org/10.1021/ie200686q.

    Article  CAS  Google Scholar 

  30. Mejía-Trejo VL, Fregoso-Israel E, Pfeiffer H. Textural, structural, and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4-xNaxSiO4). Chem Mater. 2008;20:7171–6. https://doi.org/10.1021/cm802132t.

    Article  CAS  Google Scholar 

  31. Hirai M, Niwa E, Hashimoto T. Thermodynamics and kinetics analyses of high CO2 absorption properties of Li3NaSiO4 under various CO2 partial pressures. Dalton Trans. 2021;50:5301–10. https://doi.org/10.1039/D1DT00531F.

    Article  CAS  PubMed  Google Scholar 

  32. Iwasaki S, Shido K, Hashimoto T. A new method for the preparation of high-purity CO2-absorbing Li3NaSiO4 powder using lithium silicate and sodium carbonate. Dalton Trans. 2022;51:15121–7. https://doi.org/10.1039/D2DT02803D.

    Article  CAS  PubMed  Google Scholar 

  33. Eitel W, Skaliks W. Über einige doppelcarbonate der alkalien und erdalkalien. Z Anorg Allg Chem. 1929;183:263–86. https://doi.org/10.1002/zaac.19291830119.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Mr. Sato and Mr. Masuda of Rigaku Co., Ltd. for the microscopy-coupled TG-DTA measurements. We would like to thank Editage for English language editing.

Funding

This study was supported by a Japan Society for the Promotion of Science KAKENHI grant (no. JP16K05886) and the Nihon University President Grant Initiative.

Author information

Authors and Affiliations

Authors

Contributions

SI, KS, and TH contributed to the study conception and design. Material preparation, data collection and analysis were performed by SI, TY, and MM. The first draft of the manuscript was written by SI and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Takuya Hashimoto.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 412 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, S., Yoshino, T., Mitsuhashi, M. et al. Li3NaSiO4 as reversible CO2 absorbent: elucidation of performance-governing factors and regeneration mechanism. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13191-8

Keywords

Navigation