Skip to main content
Log in

Simulation and comprehensive study of a new trigeneration process combined with a gas turbine cycle, involving transcritical and supercritical CO2 power cycles and Goswami cycle

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study introduces and evaluates an innovative combined cooling, heating, and power (CCHP) system integrating a gas turbine cycle with transcritical and supercritical CO2 cycles, a high-pressure steam cycle, a Goswami cycle, and a heating terminal. The primary objective is to enhance the thermodynamic efficiency and reduce the environmental impact of power generation. Through detailed exergy and energy analyses, we assessed the system’s performance and compared it with traditional energy systems. The methodology included evaluating the irreversibility within each component, particularly highlighting the gas turbine cycle’s significant share of irreversibility at 67% and the chamber’s highest exergy destruction. Our findings reveal that the integrated system achieves total energy, exergy, and electrical efficiencies of 68.83%, 34.63%, and 33.55%, respectively, while significantly reducing CO2 emissions to 0.298 kgCO2/kWh—outperforming coal, oil, and natural gas power plants in environmental sustainability. Furthermore, the integrated CCHP system showcases superior thermodynamic performance by achieving higher efficiency rates compared to existing solutions detailed in recent studies, thereby marking a significant step forward in the development of sustainable power generation technologies. This research underscores the potential of integrating transcritical and supercritical CO2 cycles with gas turbines to meet energy demands more efficiently and eco-consciously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

a, b :

Constants of the equation of state

\({\dot{C}}_{{\text{flow}}}\) :

Annual net cash inflow

D :

Diameter

e :

Specific exergy

\(\dot{E}\) :

Exergy rate

F :

Molar flow rate

h :

Enthalpy

L :

Length

\(\dot{m}\) :

Mass flow rate

m :

Interest rate

n :

Plant lifetime

\({{\text{Oil}}}_{{\text{s}}}\) :

Amount of saved oil

P :

Pressure

\(\dot{Q}\) :

Heat rate

R :

Universal gas constant

\({R}_{{\text{CO}}_{2}<}\) :

Reduction in CO2 emission

s :

Entropy

T :

Temperature

v :

Molar volume

\(\dot{W}\) :

Power rate

x :

Mole fraction

Z :

Investment cost

\(\alpha\) :

Alpha function in the equation of state

\(\propto\) :

Maintenance factor

\(\kappa\) :

Function in the equation of state

\({\varphi }_{{\text{en}}}\) :

Energy efficiency

\({\varphi }_{{\text{el}}}\) :

Electrical efficiency

\({\varnothing }_{{\text{CO}}_{2}}\) :

Total CO2 emission

\(\omega\) :

Acentric factor

\({\Psi }_{{\text{ex}}}\) :

Exergy efficiency

0:

Standard conditions

c :

Critical properties

C :

Compressor

CH, ch:

Chemical

dest:

Destruction

el:

Electrical

en:

Energy

GT:

Gas turbine

HEX:

Heat exchanger

in:

Input

out:

Output

P :

Pump

PH:

Physical

r :

Reduced properties

T :

Turbine

CCHP:

Combined cooling heating and power

EFD:

Exergy flow diagram

EGR:

Exhaust gas recycle ratio

GPCC:

Goswami power and cooling cycle

GTC:

Gas turbine cycle

HPSC:

High-pressure steam cycle

LEC:

Levelized energy cost

LHV:

Lower heating value

LMTD:

Logarithmic mean temperature difference

NPV:

Net present value

SCRC:

Supercritical CO2 Rankine cycle

SEA:

Specific emission analysis

TAC:

Total annual cost

TCRC:

Transcritical CO2 Rankine cycle

TUCP:

Total unit cost of product

References

  1. Ghorbani B, Sadeghzadeh M, Ahmadi MH. A geothermal-assisted layout for power production and carbon dioxide capture. Energy Rep. 2022;8:14533–44.

    Article  Google Scholar 

  2. Mohammadi Hadelu L, Ahmadi BF. Exergoeconomic and exergoenvironmental analyses and optimization of different ejector based two stage expander-organic flash cycles fuelled by solar energy. Energy Convers Manag. 2020;216:112943.

    Article  Google Scholar 

  3. Leveni M, Cozzolino R. Energy, exergy, and cost comparison of Goswami cycle and cascade organic Rankine cycle/absorption chiller system for geothermal application. Energy Convers Manag. 2021;227:113598.

    Article  CAS  Google Scholar 

  4. Abedinia O, Shorki A, Nurmanova V, Bagheri M. Synergizing efficient optimal energy hub design for multiple smart energy system players and electric vehicles. IEEE Access. 2023;11:116650–64.

    Article  Google Scholar 

  5. Zheng X, Streimikiene D, Balezentis T, Mardani A, Cavallaro F, Liao H. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. J Clean Prod. 2019;234:1113–33.

    Article  Google Scholar 

  6. Change IC. Mitigation of climate change. Contrib Work Group III Fifth Assess Rep Intergov Panel Climat Change. 2014;1454:147.

    Google Scholar 

  7. Cheng Z, Li S, Liu Y, Zhang Y, Ling Z, Yang M, et al. Post-combustion CO2 capture and separation in flue gas based on hydrate technology: a review. Renew Sustain Energy Rev. 2022;154:111806.

    Article  CAS  Google Scholar 

  8. Zare AAD, Yari M, Mohammadkhani F, Nami H, Desideri U. Thermodynamic and exergoeconomic analysis of a multi-generation gas-to-X system based on fuel-rich combustion to produce power, hydrogen, steam and heat. Sustain Cities Soc. 2022;86:104139.

    Article  Google Scholar 

  9. Su Z, Yang L. Energy management and life cycle assessment of efficient and flexible trigeneration system for coal-fired power plants. Appl Therm Eng. 2022;217:119178.

    Article  Google Scholar 

  10. Hamrang F, Shokri A, Seyed Mahmoudi SM, Ehghaghi B, Rosen MA. Performance analysis of a new electricity and freshwater production system based on an integrated gasification combined cycle and multi-effect desalination. Sustainability (Switz). 2020;12:7996.

    Article  Google Scholar 

  11. Yin F, Rao AG. A review of gas turbine engine with inter-stage turbine burner. Prog Aerosp Sci. 2020;121:100695.

    Article  Google Scholar 

  12. Barelli L, Ottaviano A. Supercharged gas turbine combined cycle: an improvement in plant flexibility and efficiency. Energy. 2015;81:615–26.

    Article  Google Scholar 

  13. González-Díaz A, Alcaráz-Calderón AM, González-Díaz MO, Méndez-Aranda Á, Lucquiaud M, González-Santaló JM. Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture. Energy. 2017;134:221–33.

    Article  Google Scholar 

  14. Wang E, Peng N, Zhang M. System design and application of supercritical and transcritical CO2 power cycles: a review. Front Energy Res. 2021;9:723875.

    Article  Google Scholar 

  15. Zhang Q, Ogren RM, Kong SC. Thermo-economic analysis and multi-objective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for offshore gas turbine application. Energy Convers Manag. 2018;172:212–27.

    Article  CAS  Google Scholar 

  16. Sabzpoushan S, Morad MR, Ebrahimi RH. A combined cooling and power transcritical CO2 cycle for waste heat recovery from gas turbines. Therm Sci Eng Prog. 2022;34:101423.

    Article  CAS  Google Scholar 

  17. Zhou A, Li XS, Ren XD, Gu CW. Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery. Energy. 2020;210:118562.

    Article  CAS  Google Scholar 

  18. Kim YM, Sohn JL, Yoon ES. Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine. Energy. 2017;118:893–905.

    Article  CAS  Google Scholar 

  19. Nami H, Mahmoudi SMS, Nemati A. Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic rankine cycle (GT-HRSG/SCO2). Appl Therm Eng. 2017;110:1315–30.

    Article  CAS  Google Scholar 

  20. Hou S, Zhou Y, Yu L, Zhang F, Cao S, Wu Y. Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle. Energy Convers Manag. 2018;172:457–71.

    Article  CAS  Google Scholar 

  21. Bai Z, Zhang G, Yang Y, Wang Z. Design performance simulation of a supercritical CO2 cycle coupling with a steam cycle for gas turbine waste heat recovery. J Energy Resour Technol Trans ASME. 2019. https://doi.org/10.1115/1.4043391.

    Article  Google Scholar 

  22. Mohammadi K, Ellingwood K, Powell K. A novel triple power cycle featuring a gas turbine cycle with supercritical carbon dioxide and organic Rankine cycles: thermoeconomic analysis and optimization. Energy Convers Manag. 2020;220:113123.

    Article  CAS  Google Scholar 

  23. Li B, Wang SS, Wang K, Song L. Comparative investigation on the supercritical carbon dioxide power cycle for waste heat recovery of gas turbine. Energy Convers Manag. 2021;228:113670.

    Article  CAS  Google Scholar 

  24. Sun L, Wang D, Xie Y. Energy, exergy and exergoeconomic analysis of two supercritical CO2 cycles for waste heat recovery of gas turbine. Appl Therm Eng. 2021;196:117337.

    Article  CAS  Google Scholar 

  25. Bonalumi D, Giuffrida A, Sicali F. A case study of cascade supercritical CO2 power cycle for waste heat recovery from a small gas turbine. Energy Convers Manag X. 2022;14:100212.

    CAS  Google Scholar 

  26. Cao Y, Bashiri Mousavi S, Ahmadi P. Techno-economic assessment of a biomass-driven liquid air energy storage (LAES) system for optimal operation with wind turbines. Fuel. 2022;324:124495.

    Article  CAS  Google Scholar 

  27. Du J, Guo J, Zhang Z, Li M, Ren F, Liu Y. A triple cascade gas turbine waste heat recovery system based on supercritical CO2 Brayton cycle: thermal analysis and optimization. Energy Convers Manag X. 2022;16:100297.

    CAS  Google Scholar 

  28. Strušnik D, Avsec J. Exergoeconomic machine-learning method of integrating a thermochemical Cu–Cl cycle in a multigeneration combined cycle gas turbine for hydrogen production. Int J Hydrog Energy. 2022;47:17121–49.

    Article  Google Scholar 

  29. Moghimi M, Emadi M, Ahmadi P, Moghadasi H. 4E analysis and multi-objective optimization of a CCHP cycle based on gas turbine and ejector refrigeration. Appl Therm Eng. 2018;141:516–30.

    Article  Google Scholar 

  30. Wang S, Zhang L, Liu C, Liu Z, Lan S, Li Q, et al. Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery. Energy. 2021;231:120956.

    Article  CAS  Google Scholar 

  31. Wang A, Wang S, Ebrahimi-Moghadam A, Farzaneh-Gord M, Moghadam AJ. Techno-economic and techno-environmental assessment and multi-objective optimization of a new CCHP system based on waste heat recovery from regenerative Brayton cycle. Energy. 2022;241:122521.

    Article  Google Scholar 

  32. Sevinchan E, Dincer I, Lang H. Energy and exergy analyses of a biogas driven multigenerational system. Energy. 2019;166:715–23.

    Article  Google Scholar 

  33. Cao Y, Dhahad HA, Togun H, Abdollahi Haghghi M, Anqi AE, Farouk N, et al. Seasonal design and multi-objective optimization of a novel biogas-fueled cogeneration application. Int J Hydrog Energy. 2021;46:21822–43.

    Article  CAS  Google Scholar 

  34. Khoshgoftar Manesh MH, Firouzi P, Kabiri S, Blanco-Marigorta AM. Evaluation of power and freshwater production based on integrated gas turbine, S-CO2, and ORC cycles with RO desalination unit. Energy Convers Manag. 2021;228:113607.

    Article  CAS  Google Scholar 

  35. Arslan M, Yılmaz C. Design and optimization of multigeneration biogas power plant using waste heat recovery system: a case study with energy, exergy, and thermoeconomic approach of power, cooling and heating. Fuel. 2022;324:124779.

    Article  CAS  Google Scholar 

  36. Tian C, Su C, Yang C, Wei X, Pang P, Xu J. Exergetic and economic evaluation of a novel integrated system for cogeneration of power and freshwater using waste heat recovery of natural gas combined cycle. Energy. 2023;264:126227.

    Article  Google Scholar 

  37. Yang G, Fan Z, Li X. Determination of confined fluid phase behavior using extended Peng–Robinson equation of state. Chem Eng J. 2019;378:122032.

    Article  CAS  Google Scholar 

  38. Peng D-Y, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fundam. 1976;15:59–64.

    Article  CAS  Google Scholar 

  39. Lopez-Echeverry JS, Reif-Acherman S, Araujo-Lopez E. Peng–Robinson equation of state: 40 years through cubics. Fluid Phase Equilib. 2017;447:39–71.

    Article  CAS  Google Scholar 

  40. Kim YM, Kim CG, Favrat D. Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources. Energy. 2012;43:402–15.

    Article  CAS  Google Scholar 

  41. Biliyok C, Yeung H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int J Greenh Gas Control. 2013;19:396–405.

    Article  CAS  Google Scholar 

  42. Hou R, Zhang N, Yang C, Zhao J, Li P, Sun B. A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methanol synthesis unit. Energy. 2023;270:126842.

    Article  CAS  Google Scholar 

  43. Silva Ortiz P, Flórez-Orrego D, de Oliveira JS, Maciel Filho R, Osseweijer P, Posada J. Unit exergy cost and specific CO2 emissions of the electricity generation in the Netherlands. Energy. 2020;208:118279.

    Article  CAS  Google Scholar 

  44. Zhao Y, Wang J. Exergoeconomic analysis and optimization of a flash-binary geothermal power system. Appl Energy. 2016;179:159–70.

    Article  Google Scholar 

  45. Bellos E, Pavlovic S, Stefanovic V, Tzivanidis C, Nakomcic-Smaradgakis BB. Parametric analysis and yearly performance of a trigeneration system driven by solar-dish collectors. Int J Energy Res. 2019;43:1534–46. https://doi.org/10.1002/er.4380.

    Article  Google Scholar 

  46. Bejan A, Tsatsaronis G, Moran MJ. Thermal design and optimization. Hoboken: Wiley; 1995.

    Google Scholar 

  47. Khani N, Khoshgoftar Manesh MH, Onishi VC. 6E analyses of a new solar energy-driven polygeneration system integrating CO2 capture, organic Rankine cycle, and humidification-dehumidification desalination. J Clean Prod. 2022;379:134478.

    Article  CAS  Google Scholar 

  48. Larsen U, Van NT, Knudsen T, Haglind F. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines. Energy. 2014;64:484–94.

    Article  Google Scholar 

  49. Mehrpooya M, Ansarinasab H, Moftakhari Sharifzadeh MM, Rosen MA. Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process. J Power Sources. 2017;364:299–315.

    Article  CAS  Google Scholar 

  50. Wei H, Su C, Dai J, Albdeiri MS, Alsenani TR, Elattar S, et al. Towards a sustainable, and economic production future: proposing a new process for methanol production based on renewable hydrogen. J Clean Prod. 2023;389:135976.

    Article  CAS  Google Scholar 

  51. Zhang M, Timoshin A, Al-Ammar EA, Sillanpaa M, Zhang G. Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system. Energy. 2023;263:125959.

    Article  CAS  Google Scholar 

  52. Chitgar N, Moghimi M. Design and evaluation of a novel multi-generation system based on SOFC-GT for electricity, fresh water and hydrogen production. Energy. 2020;197:117162.

    Article  CAS  Google Scholar 

  53. Azariyan H, Vajdi M, Rostamnejad TH. Assessment of a high-performance geothermal-based multigeneration system for production of power, cooling, and hydrogen: thermodynamic and exergoeconomic evaluation. Energy Convers Manag. 2021;236:113970.

    Article  CAS  Google Scholar 

  54. Zhang Y, Liang T, Yang K. An integrated energy storage system consisting of compressed carbon dioxide energy storage and organic rankine cycle: exergoeconomic evaluation and multi-objective optimization. Energy. 2022;247:123566.

    Article  CAS  Google Scholar 

  55. Akrami E, Chitsaz A, Nami H, Mahmoudi SMS. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. Energy. 2017;124:625–39.

    Article  CAS  Google Scholar 

  56. Baak JA, Pozarlik AK, Arentsen MJ, Brem G. Techno-economic study of a zero-emission methanol based energy storage system. Energy Convers Manag. 2019;182:530–45.

    Article  CAS  Google Scholar 

  57. Soltanieh M, Azar KM, Saber M. Development of a zero emission integrated system for co-production of electricity and methanol through renewable hydrogen and CO2 capture. Int J Greenh Gas Control. 2012;7:145–52.

    Article  CAS  Google Scholar 

  58. Asgari A, Yari M, Mahmoudi SMS. Exergy and exergoeconomic analyses and multi-objective optimization of a novel cogeneration system for hydrogen and cooling production. Int J Hydrog Energy. 2022;47:26114–34.

    Article  CAS  Google Scholar 

  59. Hashemian N, Noorpoor A. Assessment and multi-criteria optimization of a solar and biomass-based multi-generation system: thermodynamic, exergoeconomic and exergoenvironmental aspects. Energy Convers Manag. 2019;195:788–97.

    Article  Google Scholar 

  60. Sezer N, Koç M. Development and performance assessment of a new integrated solar, wind, and osmotic power system for multigeneration, based on thermodynamic principles. Energy Convers Manag. 2019;188:94–111.

    Article  CAS  Google Scholar 

  61. Chen Y, Feng L. Process design and evolutionary algorithm optimization of a biomass-based energy system to produce electricity, heating, and cooling. Fuel. 2022;324:124498.

    Article  CAS  Google Scholar 

  62. Mahdavi N, Ghaebi H, Minaei A. Proposal and multi-aspect assessment of a novel solar-based trigeneration system; investigation of zeotropic mixture’s utilization. Appl Therm Eng. 2022;206:118110.

    Article  CAS  Google Scholar 

  63. Ziapour BM, Afzal S, Mahdian J, Reza MA. Enhancing solar still performance through innovative modeling, integration with reflectors, and semi-transparent solar cells: a 3E analysis and multi-objective optimization. Appl Therm Eng. 2024;242:122464.

    Article  Google Scholar 

  64. Hai T, Lin H, Albdeiri MS, Alsenani TR, Elattar S, Abed AM, et al. A novel trigeneration model using landfill gas upgrading process and waste heat recovery: application of methanol, desalinated water, and oxygen production. J Clean Prod. 2023;393:136224.

    Article  CAS  Google Scholar 

  65. Cao Y, Bani Hani EH, Mansir IB, Diyoke C, Dhahad HA. Exergy and exergo-economic investigation of a novel hydrogen production and storage system via an integrated energy system. Int J Hydrog Energy. 2022;47:26770–88.

    Article  CAS  Google Scholar 

  66. Dincer I, Rosen MA. Exergy: energy, environment and sustainable development. Newnes (2012). Elsevier, Netherlands.

  67. He J, Han N, Xia M, Sun T, Ghaebi H. Multi-objective optimization and exergoeconomic analysis of a multi-generation system based on biogas-steam reforming. Int J Hydrog Energy. 2023;48:21161–75.

    Article  CAS  Google Scholar 

  68. Ghaebi H, Yari M, Gargari SG, Rostamzadeh H. Thermodynamic modeling and optimization of a combined biogas steam reforming system and organic Rankine cycle for coproduction of power and hydrogen. Renew Energy. 2019;130:87–102.

    Article  CAS  Google Scholar 

  69. Akbari Kordlar M, Mahmoudi SMS. Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration. Energy Convers Manag. 2017;134:208–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 31 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, Y., Wang, M. et al. Simulation and comprehensive study of a new trigeneration process combined with a gas turbine cycle, involving transcritical and supercritical CO2 power cycles and Goswami cycle. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13182-9

Keywords

Navigation