Skip to main content
Log in

Thermomechanical performances of epoxy complex with castor oil-based polyglycidyl ethers as efficient toughness and strength agents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the work is to develop two functionalized castor oil-based polyglycidyl ethers containing benzene rings by ring-opening etherification and alkylation reaction, respectively: phenoxy castor oil-based polyglycidyl ether (POCOGE) and phenolic castor oil-based polyglycidyl ether (PCOGE). Castor oil-based polyglycidyl ethers were introduced into E-51, which is a common type of bisphenol A epoxy resin. The thermomechanical performances of the polymer blends were evaluated. The addition of the synthetic castor oil-based polyglycidyl ethers showed an enhancement of E-51 in both toughness and flexibility without sacrificing bending strength. The tensile strength reached 81.0 MPa and 86.4 MPa, which were 26.5% and 34.9% higher compared to that of pure E-51. Meanwhile, the impact strength reached 28.1 kJ m−2 and 19.4 kJ m−2, an increase of 147% and 70.3%, respectively, compared with E-51. Scanning Electron Microscope (SEM) graphics exhibited those cured polymers had ductile fracture. The non-isothermal curing kinetics of different curing systems were analyzed by Málek's method and conformed to the Šesták–Berggren SB(m,n) model. This study aims to address the inadequate stiffness of bio-based epoxy resins and extend the scope of bio-based epoxy resins with versatile functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rimdusit S, Ishida H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer. 2000;41(22):7941–9. https://doi.org/10.1016/S0032-3861(00)00164-6.

    Article  CAS  Google Scholar 

  2. Sinh LH, Son BT, Trung NN, Lim D-G, Shin S, Bae JY. Improvements in thermal, mechanical, and dielectric properties of epoxy resin by chemical modification with a novel amino-terminated liquid-crystalline copoly(ester amide). React Funct Polym. 2012;72(8):542–8. https://doi.org/10.1016/j.reactfunctpolym.2012.05.004.

    Article  CAS  Google Scholar 

  3. Xing S, Yang J, Huang Y, Zheng Q, Zeng J. Preparation and characterization of a novel microcapsule-type latent curing agent for epoxy resin. Mater Des. 2015;85:661–70. https://doi.org/10.1016/j.matdes.2015.07.098.

    Article  CAS  Google Scholar 

  4. Foix D, Ramis X, Serra A, Sangermano M. UV generation of a multifunctional hyperbranched thermal crosslinker to cure epoxy resins. Polymer. 2011;52(15):3269–76. https://doi.org/10.1016/j.polymer.2011.05.029.

    Article  CAS  Google Scholar 

  5. Foix D, Serra A, Amparore L, Sangermano M. Impact resistance enhancement by adding epoxy ended hyperbranched polyester to DGEBA photocured thermosets. Polymer. 2012;53(15):3084–8. https://doi.org/10.1016/j.polymer.2012.05.046.

    Article  CAS  Google Scholar 

  6. Yu Q, Alvarez NT, Miller P, Malik R, Haase MR, Schulz M, Zhu X. Mechanical strength improvements of carbon nanotube threads through epoxy cross-linking. Materials. 2016;9(2):68. https://doi.org/10.3390/ma9020068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li S, Wu Q, Zhu H, Lin Q, Wang C. Impact resistance enhancement by adding core-shell particle to epoxy resin modified with hyperbranched polymer. Polymers. 2017;9(12):684. https://doi.org/10.3390/polym9120684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mashouf RG, Mohanty AK, Misra M. Green approaches to engineer tough biobased epoxies: a review. ACS Sustain Chem Eng. 2017;5(11):9528–41. https://doi.org/10.1021/acssuschemeng.7b01422.

    Article  CAS  Google Scholar 

  9. Hayes BS, Seferis JC. Modification of thermosetting resins and composites through preformed polymer particles: a review. Polym Compos. 2001;22(4):451–67. https://doi.org/10.1002/pc.10551.

    Article  CAS  Google Scholar 

  10. Mohan P. A critical review: the modification, properties, and applications of epoxy resins. Polym Plast Technol Eng. 2013;52(2):107–25. https://doi.org/10.1080/03602559.2012.727057.

    Article  CAS  Google Scholar 

  11. Goud VV, Patwardhan AV, Dinda S, Pradhan NC. Epoxidation of karanja (Pongamia glabra) oil catalysed by acidic ion exchange resin. Eur J Lipid Sci Technol. 2007;109(6):575–84. https://doi.org/10.1002/ejlt.200600298.

    Article  CAS  Google Scholar 

  12. Mustata F, Tudorachi N. Synthesis and thermal characterization of some hardeners for epoxy resins based on castor oil and cyclic anhydrides. Ind Crops Prod. 2021;159:113087. https://doi.org/10.1016/j.indcrop.2020.113087.

    Article  CAS  Google Scholar 

  13. Unnikrishnan KP, Thachil ET. Aging and thermal studies on epoxy resin modified by epoxidized novolacs. Polym Plast Technol Eng. 2006;45(4):469–74. https://doi.org/10.1080/03602550600553762.

    Article  CAS  Google Scholar 

  14. Liu Y, Lin Y, Wang Y, Wu K, Cao B, Wang L. Simultaneously improving toughness and hydrophobic properties of cycloaliphatic epoxy resin through silicone prepolymer. J Appl Polym Sci. 2022;139(32):e52478. https://doi.org/10.1002/app.52478.

    Article  CAS  Google Scholar 

  15. Chakraborty I, Chatterjee K. Polymers and composites derived from castor oil as sustainable materials and degradable biomaterials: current status and emerging trends. Biomacromol. 2020;21(12):4639–62. https://doi.org/10.1021/acs.biomac.0c01291.

    Article  CAS  Google Scholar 

  16. Badri KH, Ahmad SH, Zakaria S. Production of a high-functionality RBD palm kernel oil-based polyester polyol. J Appl Polym Sci. 2001;81(2):384–9. https://doi.org/10.1002/app.1449.

    Article  CAS  Google Scholar 

  17. Yang X, Wang C, Li S, Huang K, Li M, Mao W. Study on the synthesis of bio-based epoxy curing agent derived from myrcene and castor oil and the properties of the cured products. RSC Adv. 2017;7(1):238–47. https://doi.org/10.1039/c6ra24818g.

    Article  CAS  Google Scholar 

  18. Park SJ, Jin FL, Lee JR. Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys. 2004;205(15):2048–54. https://doi.org/10.1002/macp.200400214.

    Article  CAS  Google Scholar 

  19. Chen JL, Jin FL, Park SJ. Thermal stability and impact and flexural properties of epoxy resins/epoxidized castor oil/nano-CaCO3 ternary systems. Macromol Res. 2010;18(9):862–7. https://doi.org/10.1007/s13233-010-0911-4.

    Article  CAS  Google Scholar 

  20. Zhu L, Jin FL, Park SJ. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and Al2O3 nanoparticles. Bull Korean Chem Soc. 2012;33(8):2513–6. https://doi.org/10.5012/bkcs.2012.33.8.2513.

    Article  CAS  Google Scholar 

  21. Wei D, Yong Q, Deng S, Zeng J, Chen H. Synthesis and toughening application of castor oil-based hyperbranched epoxy resin. Thermoset Resin. 2020;35(1):12–8. https://doi.org/10.13650/j.cnki.rgxsz.2020.01.003.

    Article  CAS  Google Scholar 

  22. De B, Gupta K, Mandal M, Karak N. Biodegradable hyperbranched epoxy from castor oil-based hyperbranched polyester polyol. ACS Sustain Chem Eng. 2013;2(3):445–53. https://doi.org/10.1021/sc400358b.

    Article  CAS  Google Scholar 

  23. Wang F, Wang C, Kuai J, Li D, Zhu X. Study on synthesis technology of castor oil glycidyl ether. Chem Ind For Prod. 2015;35(04):112–6. https://doi.org/10.3969/j.issn.0253-2417.2015.04.018.

    Article  CAS  Google Scholar 

  24. Zhang H, Zhu F, Xu Y, Zhang X, Zhu X. Microwave-assisted NaHSO4-catalyzed synthesis of ricinoleic glycol ether esters. Synth Commun. 2017;47(5):486–95. https://doi.org/10.1080/00397911.2016.1268695.

    Article  CAS  Google Scholar 

  25. Zhang H, Zhu F, Fu Q, Zhang X, Zhu X. Mechanical properties of renewable plasticizer based on ricinoleic acid for PVC. Polym Test. 2019;76:199–206. https://doi.org/10.1016/j.polymertesting.2019.03.020.

    Article  CAS  Google Scholar 

  26. Fu Q, Long Y, Gao Y, Ling Y, Qian H, Wang F, et al. Synthesis and properties of castor oil based plasticizers. RSC Adv. 2019;9(18):10049–57. https://doi.org/10.1039/c8ra10288k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu Q, Tan J, Han C, Zhang X, Fu B, Wang F, et al. Synthesis and curing properties of castor oil-based triglycidyl ether epoxy resin. Polym Adv Technol. 2020;31(11):2552–60. https://doi.org/10.1002/pat.4982.

    Article  CAS  Google Scholar 

  28. Hu J, Shan J, Zhao J, Tong Z. Water resistance and curing kinetics of epoxy resins with a novel curing agent of biphenyl-containing amine synthesized by one-pot method. Thermochim Acta. 2015;606:58–65. https://doi.org/10.1016/j.tca.2015.03.011.

    Article  CAS  Google Scholar 

  29. Zhu F, Fu Q, Yu M, Zhou J, Li N, Wang F. Synthesis and curing properties of multifunctional castor oil-based epoxy resin. Polym Test. 2023;122:108017. https://doi.org/10.1016/j.polymertesting.2023.108017.

    Article  CAS  Google Scholar 

  30. Qiao S. Discussion on the mechanism and influencing factors of alkylation reaction. Sci Technol Inf Dev Econ. 2011;21(18):195–6. https://doi.org/10.3969/j.issn.1005-6033.2011.18.082.

    Article  Google Scholar 

  31. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69. https://doi.org/10.1016/0040-6031(92)85118-f.

    Article  Google Scholar 

  32. Wan J, Bu Z, Xu C, Li B, Fan H. Learning about novel amine-adduct curing agents for epoxy resins: butyl-glycidylether-modified poly(propyleneimine) dendrimers. Thermochim Acta. 2011;519(1–2):72–82. https://doi.org/10.1016/j.tca.2011.02.038.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFD2200802) and the Jiangsu Province Key R&D Program (BE2019111). Authors also thank Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Xinbao Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 809 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Zhu, F., Chen, Z. et al. Thermomechanical performances of epoxy complex with castor oil-based polyglycidyl ethers as efficient toughness and strength agents. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13168-7

Keywords

Navigation