Skip to main content
Log in

Research progress on refrigeration technologies of car refrigerator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With the improvement of the national economic level and the diversity of medical equipment needs, the car refrigerator as an important carrier in the cold chain logistics link is rapidly developed. According to the different applications, there are differences in the refrigeration technologies and cooling capacity of car refrigerators. Around car refrigerators, the development status of car refrigerator refrigeration technologies is reviewed, the characteristics and functions of car refrigerators are introduced, the mechanism and characteristics of several refrigeration technologies under different scenarios are studied, and the potential development and application directions of car refrigerators with different refrigeration technologies are summarized. The research results are of certain practical significance to the improvement of the last-mile of cold chain logistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang DX. Application status and prospects of vacuum insulation panels. New Build Mater. 2014;41(01):30–2+57.

    CAS  Google Scholar 

  2. Wu JY, Hsiao HI. Food quality and safety risk diagnosis in the food cold chain through failure mode and effect analysis. Food Control. 2021;120:107501.

    Article  CAS  Google Scholar 

  3. Gustafsson J, Cederberg C, Sonesson U, Emanuelsson A. The methodology of the FAO study: global food losses and food waste-extent, causes and prevention”-FAO, 2011. 2013.

  4. Gunders D, Bloom J. Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. 2017.

  5. Raut RD, Gardas BB, Narwane VS, Narkhede BE. Improvement in the food losses in fruits and vegetable supply chain-a perspective of cold third-party logistics approach. Oper res perspect. 2019;6:100117.

    Google Scholar 

  6. Ou QX, Zhang YP. Quality and safety problems and countermeasures of fruit and vegetable products in cold chain logistics system. Rural Econ Sci-Technol. 2021;32(06):65–6.

    Google Scholar 

  7. Zhang S, Chen W. China’s energy transition pathway in a carbon neutral vision. Engineering. 2022;14:64–76.

    Article  CAS  Google Scholar 

  8. Dong Y, Miller SA. Assessing the lifecycle greenhouse gas (GHG) emissions of perishable food products delivered by the cold chain in China. J Clean Prod. 2021;303:126982.

    Article  CAS  Google Scholar 

  9. Dinga CD, Wen Z. China’s green deal: can China’s cement industry achieve carbon neutral emissions by 2060? Renew Sustain Energy Rev. 2022;155:111931.

    Article  CAS  Google Scholar 

  10. Loisel J, Duret S, Cornuéjols A, Cagnon D, Tardet M, Derens-Bertheau E, Laguerre O. Cold chain break detection and analysis: can machine learning help? Trends Food Sci Technol. 2021;112:391–9.

    Article  CAS  Google Scholar 

  11. Zhang AK, Wu M, Feng YL, Yu WH, Xiong C, Xie J. Research on Stirling-type low-temperature cold storage at -80 °C. Journal of Refrigeration. 2023;44(05):25–31.

    CAS  Google Scholar 

  12. Wang XX, Zhu XX, Tang LM, Yu CH. Design of a field low-temperature storage container. China Med Equip. 2012;9(01):30–2.

    Google Scholar 

  13. Nohay JAD, De Belen JKH, Claros JVB, Lupo RBP, Barrato AB, Cruz JCD, Amado TM, Manuel MCE. Design and fabrication of a portable solar powered thermoelectric refrigerator for insulin storage. In: 2020 11th IEEE control and system graduate research colloquium (ICSGRC). IEEE. 2020.

  14. Akusu O, Ogie N, Udumebraye J. Design and construction of a portable refrigerator. Niger J Eng Sci Res. 2018;1:105–18.

    Google Scholar 

  15. Huang J, Lei MJ, Zhang H. Experimental studies on the performance of small solar photovoltaic DC car-refrigerator. Energy Res Inform. 2020;36(03):149–53.

    Google Scholar 

  16. Meng XL, Qi YX, Wang ZL, Chen HT, Fu M, Zhang H. Design of containing box of Stirling cycle ultra-low temperature refrigerator and analysis of temperature field in the box. Chin J Refrig Technol. 2015;35(03):34–8.

    Google Scholar 

  17. Wang B, Qi YX, Li H. Experimental study and simulation of temperature field in Stirling refrigerator. Energy Res Inform. 2019;35(01):17–21.

    CAS  Google Scholar 

  18. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.

    Article  CAS  Google Scholar 

  19. Zhao Y, Zhang X, Xu X, Zhang S. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures. J Mol Liq. 2020;319:114360.

    Article  CAS  Google Scholar 

  20. Xie YM. Analysis and optimization of the current situation of “cold chain” in blood collection. Jilin Medicine. 2013;34(28):5838–9.

    Google Scholar 

  21. Xu XF, Zhang XL, Zhou SX, Wang YH, Liu L, Liu S. Design and experimental study on the storage type insulation box with multi-temperature. J Refrig. 2019;40(03):92–8.

    Google Scholar 

  22. Janjevic M, Winkenbach M. Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets. Transp Res Part A: Policy and Practice. 2020;133:164–96.

    Google Scholar 

  23. Ashok A, Brison M, LeTallec Y. Improving cold chain systems: challenges and solutions. Vaccine. 2017;35(17):2217–23.

    Article  PubMed  Google Scholar 

  24. Abdul-Wahab SA, Elkamel A, Al-Damkhi AM, Is’ Haq A, Al-Rubai’ey HS, Al-Battashi AK, Al-Tamimi AR, Al-Mamari KH, Chutani MU. Design and experimental investigation of portable solar thermoelectric refrigerator. Renewable Energy. 2009;34(1):30–4.

    Article  Google Scholar 

  25. Reid E, Barkes J, Morrison C, Ung A, Patel R, Rebarker C, Panchal P, Vasa S. Design and testing of a thermoelectrically-cooled portable vaccine cooler. J Young Invest. 2018; 35(2).

  26. Abd Malek N, Osman SZ, Ehsan NM, Roslan N, Rosli MF. Design and development of mini portable cooler for breastmilk storage. Int J Eng Technol. 2018;7(4):569–72.

    Article  Google Scholar 

  27. Dai YJ, Wang RZ, Ni L. Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells. Sol Energy Mater Sol Cells. 2003;77(4):377–91.

    Article  CAS  Google Scholar 

  28. Singh GK. Solar power generation by PV (photovoltaic) technology: a review. Energy. 2013;53:1–13.

    Article  Google Scholar 

  29. Aich S, Nayak J. Design and fabrication of a solar portable refrigerator. Mater Today: Proceed. 2021;39:1955–8.

    Google Scholar 

  30. Dai SB, Wang Q, Li JQ, Zhuo ZH, Hong ZH, Pang YJ, Zeng YQ, Cao Y. An experimental study of characteristics of vehicle refrigerator based on PCM cold storage. Refrigeration. 2022;41(03):25–8.

    Google Scholar 

  31. Brown JS, Domanski PA. Review of alternative cooling technologies. Appl Therm Eng. 2014;64(1–2):252–62.

    Article  Google Scholar 

  32. Hachem H, Gheith R, Aloui F, Nasrallah SB. Technological challenges and optimization efforts of the Stirling machine: a review. Energy Convers Manag. 2018;171:1365–87.

    Article  CAS  Google Scholar 

  33. Wang TJ, Zhang WJ, Yang HM, Tang XL, Zhu KZ. Development of portable Stirling cryogenic refrigerator. J Refrig. 2011;32(02):27–9+49.

    CAS  Google Scholar 

  34. Chen L, Chen X. Experimental analysis of a solar photovoltaic Stirling freezer. Vacuum & Cryogenics. 2017;23(03):168–71.

    Google Scholar 

  35. Chen J, Chen X, Lei YC, Zhang TR, Shi YM. Research on the performance of Stirling low-temperature freezer with low-temperature phase change materials. Journal of Refrigeration. 2023;44(02):144–50+158.

    CAS  Google Scholar 

  36. Zhang AK, Wu YN, Wen JJ, Liu SS, Zhang H. Study on -90 °C refrigerator cooled by pulse tube cryocooler. Chin J Low Temp Phys. 2018;40(01):44–8.

    Google Scholar 

  37. Yang T, Wang C, Sun Q, Wennersten R. Study on the application of latent heat cold storage in a refrigerated warehouse. Energy Proced. 2017;142:3546–52.

    Article  Google Scholar 

  38. Zhao Y, Zhang X, Xu X, Zhang S. Development of composite phase change cold storage material and its application in vaccine cold storage equipment. J Energy Storage. 2020;30:101455.

    Article  Google Scholar 

  39. Devrani S, Tiwari R, Khan N, Sankar K, Patil S, Sridhar K. Enhancing the insulation capability of a vaccine carrier box: an engineering approach. J Energy Storage. 2021;36:102182.

    Article  Google Scholar 

  40. Ray AK, Singh S, Rakshit D. Comparative study of cooling performance for portable cold storage box using phase change medium. Therm Sci Eng Prog. 2022;27:101146.

    Article  CAS  Google Scholar 

  41. Bansal PK, Martin A. Comparative study of vapor compression, thermoelectric and absorption refrigerators. Int J Energy Res. 2000;24(2):93–107.

    Article  CAS  Google Scholar 

  42. Aste N, Del Pero C, Leonforte F. Active refrigeration technologies for food preservation in humanitarian context-a review. Sustain Energy Technol Assess. 2017;22:150–60.

    Google Scholar 

  43. Buchter F, Dind P, Pons M. An experimental solar-powered adsorptive refrigerator tested in Burkina-Faso. Int J Refrig. 2003;26(1):79–86.

    Article  CAS  Google Scholar 

  44. Hildbrand C, Dind P, Pons M, Buchter F. A new solar powered adsorption refrigerator with high performance. Sol Energy. 2004;77(3):311–8.

    Article  CAS  Google Scholar 

  45. Hermes CJL, Barbosa JR Jr. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers. Appl Energy. 2012;91(1):51–8.

    Article  Google Scholar 

  46. Chen XQ, Tong L, Liu JX, Yao WH. Experimental study of a portable solar temperature insulation package based on semiconductor refrigeration. Refrigeration. 2016;35(04):70–5.

    Google Scholar 

  47. Xi GN, Cai CS, Li J, Deng Y. Experimental study on a solar photovoltaic DC refrigerator. Appl Mech Mater. 2013;316:109–12.

    Article  Google Scholar 

  48. Azzouz K, Leducq D, Gobin D. Enhancing the performance of household refrigerators with latent heat storage: an experimental investigation. Int J Refrig. 2009;32(7):1634–44.

    Article  CAS  Google Scholar 

  49. Sonnenrein G, Elsner A, Baumhögger E, Morbach A, Fieback K, Vrabec J. Reducing the power consumption of household refrigerators through the integration of latent heat storage elements in wire-and-tube condensers. Int J Refrig. 2015;51:154–60.

    Article  CAS  Google Scholar 

  50. Kim DS, Ferreira CAI. Solar refrigeration options-a state-of-the-art review. Int J Refrig. 2008;31(1):3–15.

    Article  CAS  Google Scholar 

  51. Berchowitz DM, Kwon Y. Environmental profiles of Stirling-cooled and cascade-cooled ultra-low temperature freezers. Sustainability. 2012;4(11):2838–51.

    Article  Google Scholar 

  52. Wang X, Zhang Y, Li H, Dai W, Chen S, Lei G, Luo E. A high efficiency hybrid Stirling-pulse tube cryocooler. AIP Adv. 2015. https://doi.org/10.1063/1.4915900.

    Article  Google Scholar 

  53. Kim SY, Chung WS, Shin DK, Cho KS. The application of Stirling cooler to refrigeration. IECEC-97 Proceedings of the thirty-second intersociety energy conversion engineering conference (cat. no. 97CH6203). IEEE. 1997; 2: 1023–1026.

  54. Lin Q, Zhao Q, Lev B. Cold chain transportation decision in the vaccine supply chain. Eur J Oper Res. 2020;283(1):182–95.

    Article  Google Scholar 

  55. Wang B, Xu HF, Zhang WQ, Kou CC, Wang HS, Wu WW, Yang YL, Hou GZ, Liu H, Yin CL, Zhu KZ, Guo LZ. A low-temperature refrigerator based on gas bearing Stirling cryocoolers. Cryo & Supercond. 2017;45(08):26–31.

    CAS  Google Scholar 

  56. Chen HT, Liu ZJ, Li CJ, Niu YT, Zhang JT, Zhang H. Development of a small cryogenic Stirling-type pulse tube cooler freezer. Cryo. & Supercond. 2015; 43.09: 11–14 + 19.

  57. Liu YF, Chen S, Zhou GL. Experimental research of low temperature refrigerator with Stirling-type pulse tube cooler. Fluid Machinery. 2018; 46.01: 69–72+88.

  58. Thiessen S, Knabben FT, Melo C, Gonçalves JM. An experimental study on the use of vaccum insulation panels in household refrigerators. 2016.

  59. Zhao XC, Xiang XY, Wang SC, Jiang PN, Gao D, Yi LY, An MD, Bai FL, Xu WG, Zhang JJ, Hu JX. By-production, emissions and abatement cost–climate benefit of HFC-23 in China’s HCFC-22 plants. Adv Clim Chang Res. 2023;14(1):136–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankuo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, A., Xie, F. et al. Research progress on refrigeration technologies of car refrigerator. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13089-5

Keywords

Navigation