Skip to main content
Log in

Insight into the stabilization activity of n-SiO2 powder in SEBS phase

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The inhibition effects of silica nanoparticles on the styrene–ethylene–butadiene–styrene copolymer are investigated by chemiluminescence under an advanced degradation stage achieved by γ-irradiation at 50 kGy. The CL thermal and nonisothermal spectra reveal an improving stabilization activity as the silica loading increases from 2 and 5 up to 10 mass%. The greater the filler concentration is investigated, the higher stability is achieved. The values of activation energies emphasize the contribution of this filler on the delay of oxidation even in the irradiated matrices. The comparison of oxidation induction times obtained by isothermal chemiluminescence at 210 °C is a relevant proof for the action of superficial traps in the breaking down the auto-oxidation chain by means of the scavenging free polymer fragments. The values of activation energies required for the delay of oxidation increase from 85 kJ mol−1 for pristine polymer to 100–124 kJ mol−1 for composited SEBS in unirradiated states and from 58 to 91–103 kJ mol−1 for these materials subjected to an accelerated oxidation by γ-irradiation at 50 kGy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salmi MS, Zoukrami F, Haddaoui N. Structure-properties relation in thermoplastic polymer/silica nanocomposites in presence of stearic acid as modifier agent. Int J Polym Anal Charact. 2021;26:604–17. https://doi.org/10.1080/1023666X.2021.1947661.

    Article  CAS  Google Scholar 

  2. Yadav R, Singh M, Shekhawat D, Lee S-Y, Park S-J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: a review. Compos Part A: Appl Sci Manufac. 2023;175: 107775. https://doi.org/10.1016/j.compositesa.2023.107775.

    Article  CAS  Google Scholar 

  3. Blanco I, Abate L, Bottino P. Chiacchio MA. Synthesis and thermal characterization of monosubstituted octaphenyl POSS/polystyrene nanocomposites. J Therm Anal Calorim 2019;138:2357–65. https://doi.org/10.1007/s10973-019-08212-w.

  4. Zaharescu T, Ilieş D-C, Roşu T. Thermal and spectroscopic analysis of stabilization effect of copper complexes in EPDM. J Therm Anal Calorim. 2016;123:231–9. https://doi.org/10.1007/s10973-015-4893-5.

    Article  CAS  Google Scholar 

  5. Motori 1, Montanari GC, Saccani A, Peruzzotti F. Short-term evaluation of the thermal endurance characteristics of polymeric materials by TA. J Therm Anal Calorim 2003;72:1159–66. https://doi.org/10.1023/A:1025044415861.

  6. Rychlý J, Rychlá L, Novák I, Vanko V, Preťo J, Janigová I, Chodák I. Thermooxidative stability of hot melt adhesives based on metallocene polyolefins grafted with polar acrylic acid moieties. Polym Test. 2020;85: 106422. https://doi.org/10.1016/j.polymertesting.2020.106422.

    Article  CAS  Google Scholar 

  7. Pielichowski K, Pielichowska K. Thermal analysis of polymeric materials. New York: Materials and developments. Wiley; 2022.

    Book  Google Scholar 

  8. Rychlý J, Matisová-Rychlá L, Csomorová K, Janigová I, Schilling M, Learner T. Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence in degradation of polyethylene, polypropylene, polystyrene and poly(methyl methacrylate). Polym. Degrad. Stab. 20111;96:1573–81. https://doi.org/10.1016/j.polymdegradstab.2011.05.020.

  9. Pospíšil J, Nešpůrek S. Chain-breaking stabilizers in polymers: the current status. Polym Degrad Stab. 1995;49:99–110. https://doi.org/10.1016/0141-3910(95)00043-L.

    Article  Google Scholar 

  10. Dehaghi NG, Kokabi M. Polyvinylidene fluoride/barium titanate nanocomposite aligned hollow electrospun fibers as an actuator. Mater Res Bull. 2023;158: 112052. https://doi.org/10.1016/j.materresbull.2022.112052.

    Article  CAS  Google Scholar 

  11. Blanco I, Zaharescu T. The effect of polyhedral oligomeric silsesquioxanes (POSSs) incorporation in ethylene-propylene-diene-terpolymer (EPDM): a thermal study. J Therm Anal Calorim. 2022;147:5313–21. https://doi.org/10.1007/s10973-021-10994-x.

    Article  CAS  Google Scholar 

  12. Fu X, Lin J, Liang Z, Yao R, Wu W, Fang Z, Zou W, Wu Z, Ning H, Peng J. Graphene oxide as a promising nanofiller for polymer composite. Surf Interfaces. 2023;37: 102747. https://doi.org/10.1016/j.surfin.2023.102747.

    Article  CAS  Google Scholar 

  13. Bernstein R, Thornberg SM, Irwin AN, Hochrein JM, Derzon DK, Klamo SB, Clough RL. Radiation oxidation mechanisms: Volatile organic degradation products from polypropylene having selective C-13 labeling studied by GC/MS. Polym Degrad Stab. 2008;93:854–70. https://doi.org/10.1016/j.polymdegradstab.2008.01.020.

    Article  CAS  Google Scholar 

  14. Bolland JL, Gee G. Kinetic studies in the chemistry of rubber and related materials. III. Thermochemistry and mechanisms of olefin oxidation. Trans. Faraday Soc. 1946;42:236–43. https://doi.org/10.1039/TF9464200236.

  15. Allen NS, Edge M, Hussain S. Perspectives on yellowing in the degradation of polymer materials: inter-relationship of structure, mechanisms and modes of stabilisation. Polym Degrad Stab. 2022;201: 109977. https://doi.org/10.1016/j.polymdegradstab.2022.109977.

    Article  CAS  Google Scholar 

  16. He H, Shen X, Nie Z. Engineering interactions between nanoparticles using polymers. Prog Polym Sci. 2023;143: 101710. https://doi.org/10.1016/j.progpolymsci.2023.101710.

    Article  CAS  Google Scholar 

  17. Zhang W, Dehghani-Sanij AA, Blackburn RS. IR study on hydrogen bonding in epoxy resin–silica nanocomposites. Prog Natur Sci. 2008;18:801–5. https://doi.org/10.1016/j.pnsc.2008.01.024.

    Article  CAS  Google Scholar 

  18. Dorigato A, Pegoretti A, Frache A. Thermal stability of high density polyethylene–fumed silica nanocomposites. J Therm Anal Calorim. 2012;109:863–73. https://doi.org/10.1007/s10973-012-2421-4.

    Article  CAS  Google Scholar 

  19. Roberts AP, Henry BM, Sutton AP, Grovenor CRM, Briggs GAD, Miyamoto T, Kano M, Tsukahara Y, Yanaka M. Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects. J Membr Sci. 2002;208:75–88. https://doi.org/10.1016/S0376-7388(02)00178-3.

    Article  CAS  Google Scholar 

  20. Peinado C, Corrales T, Jesu´s García-Casas M, Catalina F, Santa Quiteria VR, Parellada MD. Chemiluminescence from poly(styrene-b-ethylene-co-butylene-bstyrene)(SEBS) block copolymers. Polym. Degrad. Stab. 2006;91:862–74. https://doi.org/10.1016/j.polymdegradstab.2005.06.020.

  21. Islam E, Kumar A, Hakkim NL, Nebhan L. Silica reinforced polymer composites: properties, characterization and applications. In: MSJ Hashmi, ed. Encyclopedia of Materials: Plastics and Polymers. London: Elsevier: 2022, vol. 2, pp. 1057–1074.

  22. Kumar Sahu S, Boggarapu V, Rama Sreekanth PS. Improvements in the mechanical and thermal characteristics of polymer matrix composites reinforced with various nanofillers: a brief review. Mater Today-Proc. 2023. https://doi.org/10.1016/j.matpr.2023.07.032.

    Article  Google Scholar 

  23. Hassan MM, Takahashi T, Koyama K. Thermal stability, mechanical properties, impact strength, and uniaxial extensional rheology of reactive blends of PS and SBS polymers. Polym Bull. 2019;76:5537–57. https://doi.org/10.1007/s00289-018-02674-y.

    Article  CAS  Google Scholar 

  24. Chen J, Huang X, Jiang P, Wang G. Protection of SEBS/PS blends against gamma radiation by aromatic compounds.J. Appl. Polym. Sci. 3009;112:1076–1081. https://doi.org/10.1002/app.29552.

  25. Preparation and properties of styrene-ethylene/butylene-styrene (SEBS)–clay hybrids. Polym. Int. 2004;53: 1047–1051. https://doi.org/10.1002/pi.1480.

  26. Bernstein R, Thornberg SM, Assink RA, Irwin AN, Hochrein JM, Brown JR, Derzon DK, Klamo SB, Clough RL. The origins of volatile oxidation products in the thermal degradation of polypropylene, identified by selective isotopic labelling. Polym Degrad Stab. 2007;92:2076–94. https://doi.org/10.1016/j.polymdegradstab.2007.07.018.

    Article  CAS  Google Scholar 

  27. Luengo C, Allen NS, Edge M, Wilkinson A, Parellada MD, Barrio JA, Santa VR. Photo-oxidative degradation mechanisms in styrene–ethylene–butadiene–styrene (SEBS) triblock copolymer. Polym Degrad Stab. 2006;91:947–56. https://doi.org/10.1016/j.polymdegradstab.2005.06.017.

    Article  CAS  Google Scholar 

  28. Allen N.S, Edge M, Wilkinson A, Liauw CM, Mourelatou D, Barrio J, Martı́nez-Zaporta MA. Degradation and stabilisation of styrene–ethylene–butadiene–styrene (SEBS) block copolymer. Polym. Degrad. Stab. 2000;71:113–122. https://doi.org/10.1016/S0141-3910(00)00162-2.

Download references

Acknowledgements

The authors kindly thank for the financial support provided by the Ministry of Research, Innovation and Digitization through the contract PN23140201/42N-2023 and Project Number 25PFE/30.12.2021—Increasing R-D-I capacity for electrical engineering-specific materials and equipment regarding electromobility and “green” technologies within PNCDI III, Programme 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Zaharescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharescu, T. Insight into the stabilization activity of n-SiO2 powder in SEBS phase. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13063-1

Keywords

Navigation