Skip to main content
Log in

Enhanced pool boiling heat transfer characteristics on microstructured copper surfaces coated with hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

High heat flux devices necessitate efficient heat dissipation systems, with pool boiling emerging as a promising method. Leveraging advancements in nanoscience, this study investigates the enhancement of heater surface characteristics for pool boiling through experimental means. Three bare copper surfaces are coated with a hybrid nanofluid comprising copper-based carboxylic functionalized multi-walled carbon nanotubes and distilled water at concentrations of 0.3, 0.6, and 1.0 mass% using the spin coating technique. Contact angle measurements reveal superhydrophilicity across all surfaces, ranging from 14° to 7°. The 1.0 mass% coated surface exhibits significant improvements in boiling heat transfer coefficient and critical heat flux, reaching 143 W m−2 K−1 and 2206 W m−2 K−1, respectively, representing increments of 324% and 204%. Visualization of bubble dynamics demonstrates enhanced surface roughness and active nucleation sites, leading to early bubble detachment under low heat flux conditions. Bubble sizes ranging from 0.6 to 1.6 mm indicate smaller diameters compared to bare copper surfaces, facilitating rapid heat dissipation due to more nucleation sites and proper nanofluid adhesion. The microporous surfaces prepared exhibit exceptional performance, offering potential applications in boilers, heat pipes, and various heat transfer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data can be made available on request.

References

  1. Liu J, Feng Y, Yin J, Jiao T. Preparation of functional CNT–COOH–Cu nanocomposites using carbon nanotubes and application for reduction of p-nitrophenol. Integr Ferroelectr. 2020;208(1):97–103.

    Article  CAS  Google Scholar 

  2. Ji WT, Zhao PF, Zhao CY, Ding J, Tao WQ. Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability. Nanoscale Microscale Thermophys Eng. 2018;22(4):296–323.

    Article  CAS  Google Scholar 

  3. Seo GH, Son HH, Jeong U, Jeun G, Kim SJ. Effects of various thin film coating techniques on pool boiling heat transfer. In: 16th International topical meeting on nuclear reactor thermal hydraulics, NURETH 2015. American Nuclear Society; 2015. pp. 127–138.

  4. VaseiMoghadam A, Goshayeshi HR. Experimental investigation of pool boiling of single wall carbon nanotubes (SWCNTs) with different grooved surfaces. ADMT J. 2019;12(3):77–84.

    Google Scholar 

  5. Ujereh Jr, SO, Mudawar I, Amama PB, Fisher TS, Qu W. Enhanced pool boiling using carbon nanotube arrays on a silicon surface. In: ASME international mechanical engineering congress and exposition, vol. 42215, 2005. pp. 691–696.

  6. Amiri A, Shanbedi M, Amiri H, Heris SZ, Kazi SN, Chew BT, Eshghi H. Pool boiling heat transfer of CNT/water nanofluids. Appl Therm Eng. 2014;71(1):450–9.

    Article  CAS  Google Scholar 

  7. Thiagarajan SJ, Yang R, King C, Narumanchi S. Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces. Int J Heat Mass Transf. 2015;89:1297–315.

    Article  CAS  Google Scholar 

  8. Ahn HS, Sinha N, Zhang M, Banerjee D, Fang S, Baughman RH. Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests. 2006.

  9. Sun Z, Chen X, Qiu H. Bubble dynamics and heat transfer during pool boiling on wettability patterned surfaces. Heat Transfer Eng. 2018;39(7–8):663–71.

    Article  CAS  Google Scholar 

  10. Xu C, Wu G, Liu Z, Wu D, Meek TT, Han Q. Preparation of copper nanoparticles on carbon nanotubes by electroless plating method. Mater Res Bull. 2004;39(10):1499–505.

    Article  CAS  Google Scholar 

  11. Luke A. Interactions between bubble formation and heating surface in nucleate boiling. Exp Thermal Fluid Sci. 2011;35(5):753–61.

    Article  CAS  Google Scholar 

  12. Kalita S, Sen P, Sen D, Das S, Das AK, Saha BB. Experimental study of nucleate pool boiling heat transfer on microporous structured by chemical etching method. Therm Sci Eng Prog. 2021;26: 101114.

    Article  CAS  Google Scholar 

  13. Cho HR, Park SC, Kim D, Joo HM, Yu DI. Experimental study on pool boiling on hydrophilic micro/nanotextured surfaces with hydrophobic patterns. Energies. 2021;14(22):7543.

    Article  CAS  Google Scholar 

  14. Domagała K, Borlaf M, Kata D, Graule T. Synthesis of copper-based multi-walled carbon nanotube composites. Arch Metall Mater. 2020;65.

  15. Wulandari SA, Widiyandari H, Subagio A. Synthesis and characterization carboxyl functionalized multi-walled carbon nanotubes (MWCNT-COOH) and NH2 functionalized multi-walled carbon nanotubes (MWCNTNH2). In: Journal of physics: conference series, vol. 1025, No. 1, IOP Publishing; 2018. p. 012005

  16. Jha N, Ramaprabhu S. Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids. J Phys Chem C. 2008;112(25):9315–9.

    Article  CAS  Google Scholar 

  17. Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett. 2014;9(1):1–16.

    Article  CAS  Google Scholar 

  18. Jaikumar A, Rishi A, Gupta A, Kandlikar SG. Microscale morphology effects of copper–graphene oxide coatings on pool boiling characteristics. J Heat Transf. 2017;139(11): 111509.

    Article  Google Scholar 

  19. Shi J, Jia X, Feng D, Chen Z, Dang C. Wettability effect on pool boiling heat transfer using a multiscale copper foam surface. Int J Heat Mass Transf. 2020;146: 118726.

    Article  CAS  Google Scholar 

  20. Su CY, Yang CY, Jhang BW, Hsieh YL, Sin YY, Huang CC. Pool boiling heat transfer enhanced by fluorinated graphene as atomic layered modifiers. ACS Appl Mater Interfaces. 2020;12(9):10233–9.

    Article  CAS  PubMed  Google Scholar 

  21. Narendran G, Gnanasekaran N, Perumal DA, Sreejesh M, Nagaraja HS. Integrated microchannel cooling for densely packed electronic components using vanadium pentaoxide (V2O5)-xerogel nanoplatelets-based nanofluids. J Therm Anal Calorim. 2023;148(6):2547–65.

    Article  CAS  Google Scholar 

  22. Karki P, Perumal DA, Yadav AK. Comparative studies on air, water and nanofluids based Rayleigh-Benard natural convection using lattice Boltzmann method: CFD and exergy analysis. J Therm Anal Calorim. 2022;147(2):1487–503.

    Article  CAS  Google Scholar 

  23. Hamzekhani S, Falahieh MM, Kamalizadeh MR, Salmaninejad M. Bubble dynamics for nucleate pool boiling of water, ethanol and methanol pure liquids under the atmospheric pressure. J Appl Fluid Mech. 2015;8(4):893–8.

    Article  Google Scholar 

  24. Sezer N, Khan SA, Koç M. Boiling Heat transfer enhancement by self-assembled graphene/silver hybrid film for the thermal management of concentrated photovoltaics. Energ Technol. 2020;8(11):2000532.

    Article  CAS  Google Scholar 

  25. Sunil LJ, Kumarappa S, Hegde RK. Experimental studies on pool boiling heat transfer using alumina and graphene oxide nanofluids. Int Res J Eng Technol (IRJET) e-ISSN. 2016;3(01):2395–56.

    Google Scholar 

  26. Mao L, Zhou W, Hu X, He Y, Zhang G, Zhang L, Fu R. Pool boiling performance and bubble dynamics on graphene oxide nanocoating surface. Int J Therm Sci. 2020;147: 106154.

    Article  CAS  Google Scholar 

  27. Acharya AR, Pawar P, Kawale D, Pise A. Single bubble dynamics study during nucleate boiling. Int J Sci Eng Res. 2017;8(4):65–8.

    Google Scholar 

  28. Betz AR, Jenkins J, Attinger D. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int J Heat Mass Transf. 2013;57(2):733–41.

    Article  CAS  Google Scholar 

  29. Nag S, Maity S. Thermal effect of water based CNT nanofluid during spin coating, J Crit Rev. 2020;7(4).

  30. Asadi A, Alarifi IM. Effects of ultrasonication time on stability, dynamic viscosity, and pumping power management of MWCNT-water nanofluid: an experimental study. Sci Rep. 2020;10(1):1–10.

    Article  Google Scholar 

  31. Park M, Kim BH, Kim S, Han DS, Kim G, Lee KR. Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups. Carbon. 2011;49(3):811–8.

    Article  CAS  Google Scholar 

  32. Abubakr M, Osman TA, Kishawy HA, Elharouni F, Hegab H, Esawi AM. Preparation, characterization, and analysis of multi-walled carbon nanotube-based nanofluid: an aggregate based interpretation. RSC Adv. 2021;11(41):25561–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liang G, Mudawar I. Review of pool boiling enhancement with additives and nanofluids. Int J Heat Mass Transf. 2018;124:423–53.

    Article  CAS  Google Scholar 

  34. Akbari A, Mohammadian E, AlaviFazel SA, Shanbedi M, Bahreini M, Heidari M, Ahmadi G. Comparison between nucleate pool boiling heat transfer of graphene nanoplatelet-and carbon nanotube-based aqueous nanofluids. ACS Omega. 2019;4(21):19183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Basha SMM, Ahammed ME, Perumal DA, Yadav AK. A computational approach on mitigation of hotspots in a microprocessor by employing CNT nanofluid in bifurcated microchannel. Arab J Sci Eng. 2023;1–17.

  36. Suroto BJ, Kohno M, Takata Y. Surface wettability and subcooling on nucleate pool boiling heat transfer. In: AIP conference proceedings, vol. 1927, No. 1. AIP Publishing LLC; 2018. p. 030047.

  37. Das AK, Das PK, Saha P. Nucleate boiling of water from plain and structured surfaces. Exp Thermal Fluid Sci. 2007;31(8):967–77.

    Article  CAS  Google Scholar 

  38. Cooke D, Kandlikar SG. Effect of open microchannel geometry on pool boiling enhancement. Int J Heat Mass Transf. 2012;55(4):1004–13.

    Article  Google Scholar 

  39. Mori S, Okuyama K. Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media. Int J Multiph Flow. 2009;35(10):946–51.

    Article  CAS  Google Scholar 

  40. Gheitaghy AM, Saffari H, Mohebbi M. Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating. Exp Thermal Fluid Sci. 2016;76:87–97.

    Article  CAS  Google Scholar 

  41. Rohsenow WM. A method of correlating heat transfer data for surface boiling of liquids. Cambridge: MIT Division of Industrial Cooporation; 1951.

  42. Khanikar V, Mudawar I, Fisher TS. Flow boiling in a micro-channel coated with carbon nanotubes. IEEE Trans Compon Packag Technol. 2009;32(3):639–49.

    Article  CAS  Google Scholar 

  43. Sen P, Kalita S, Sen D, Das AK, Saha BB. Pool boiling heat transfer and bubble dynamics of modified copper micro-structured surfaces. Int Commun Heat Mass Transf. 2022;134: 106039.

    Article  CAS  Google Scholar 

  44. Bejan A. Convection Heat Transfer. Edition, illustrated; Wiley; 1984. Original from, the University of Michigan.

Download references

Acknowledgements

The authors express their gratitude to the National Institute of Technology Arunachal Pradesh for their invaluable support in facilitating the experimental setup and funding for procuring the necessary materials to conduct the experiment. Furthermore, the authors would like to acknowledge the Central Instrumentation Centre (CIC) at Tripura University for their prompt analysis of SEM images.

Funding

The authors acknowledge funding from the National Institute of Technology Arunachal Pradesh for procurement of the necessary materials to conduct the experiment.

Author information

Authors and Affiliations

Authors

Contributions

NR contributed to the conceptualization, methodology, validation, investigation, visualization, and writing—original draft preparation. SK was involved in the investigation, formal analysis, and writing—reviewing and editing. PS assisted in the formal analysis and writing—reviewing and editing. BS contributed to the investigation, formal analysis, and writing—reviewing and editing. DS was involved in the conceptualization, supervision, and writing—reviewing and editing.

Corresponding author

Correspondence to Dipak Sen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, N., Kalita, S., Sen, P. et al. Enhanced pool boiling heat transfer characteristics on microstructured copper surfaces coated with hybrid nanofluid. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13033-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13033-7

Keywords

Navigation