Skip to main content
Log in

The composites of cross-linked polyethylene with enhanced thermal conductivity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper describes the composites of silane cross-linked polyethylene (PEXb) mixed with four different fillers dedicated to improving thermal conductivity, such as multi-walled carbon nanotubes, graphite, boron nitride, and mineral filler. Using the mathematical modeling, the concentration of each filler was estimated to reach the value of 0.675 W m−1 K−1 suitable for the usage PEXb in the production of geothermal pipes. From tested fillers, all improve the thermal conductivity of pure PEXb; however, above the required value, only 28 mass% of boron nitride (0.937 W m−1 K−1). It was associated with its perfect dispersion and the highest gel content achieved, also resulting in the highest flexural modulus. Graphite at 5 mass% and mineral filler at 35 mass% allowed the thermal conductivity to equal 0.622 W m−1 K−1 and 0.624 W m−1 K−1, respectively, with a simultaneous medium effect on the mechanical properties. Carbon nanotubes increased PEX's conductivity to a small extent, due to their occurrence as agglomerates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Okamura T. Polyethylene PE; low density and high density BT-encyclopedia of polymeric nanomaterials. In: Kobayashi S, Müllen K, editors. Berlin, Heidelberg: Springer Berlin Heidelberg 2015 p. 1826–9. https://doi.org/10.1007/978-3-642-29648-2_252.

  2. Vetter G. Chapter 1-Introduction. A. Bertucco and G. B. T.-I. C. L. Vetter Eds. High pressure process technology: Fundamentals and applications, vol. 9, Elsevier; 2001, p. 1–15.

  3. Morshedian J, Hoseinpour PM. Polyethylene cross-linking by two-step silane method: a review. Iran Polym J. 2009;18:103–28.

    CAS  Google Scholar 

  4. Ritums JE, Mattozzi A, Gedde UW, Hedenqvist MS, Bergman G, Palmlöf M. Mechanical properties of high-density polyethylene and crosslinked high-density polyethylene in crude oil and its components. J Polym Sci B Polym Phys. 2005;44:641–8. https://doi.org/10.1002/polb.20729.

    Article  ADS  CAS  Google Scholar 

  5. Roumeli E, Markoulis A, Kyratsi Th, Bikiaris D, Chrissafis K. Carbon nanotube-reinforced crosslinked polyethylene pipes for geothermal applications: from synthesis to decomposition using analytical pyrolysis–GC/MS and thermogravimetric analysis. Polym Degrad Stab. 2014;100:42–53. https://doi.org/10.1016/j.polymdegradstab.2013.12.027.

    Article  CAS  Google Scholar 

  6. Oliveira GL, Costa MF. Optimization of process conditions, characterization and mechanical properties of silane crosslinked high-density polyethylene. Mater Sci Eng, A. 2010;527:4593–9. https://doi.org/10.1016/j.msea.2010.03.102.

    Article  CAS  Google Scholar 

  7. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, et al. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci. 2016;59:41–85. https://doi.org/10.1016/j.progpolymsci.2016.03.001.

    Article  CAS  Google Scholar 

  8. Xu X, Chen J, Zhou J, Li B. Thermal conductivity of polymers and their nanocomposites. Adv Mater. 2018;30:1705544. https://doi.org/10.1002/adma.201705544.

    Article  CAS  Google Scholar 

  9. Li A, Zhang C, Zhang Y-F. Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers. 2017;9:437. https://doi.org/10.3390/polym9090437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cardoso PSM, Ueki MM, Barbosa JDV, Garcia Filho FC, Lazarus BS, Azevedo JB. The effect of dialkyl peroxide crosslinking on the properties of LLDPE and UHMWPE. Polymers. 2021;13:3062. https://doi.org/10.3390/polym13183062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Akbarian D, Hamedi H, Damirchi B, Yilmaz DE, Penrod K, Woodward WHH, et al. Atomistic-scale insights into the crosslinking of polyethylene induced by peroxides. Polymer. 2019;183: 121901. https://doi.org/10.1016/j.polymer.2019.121901.

    Article  CAS  Google Scholar 

  12. Garmabi H, Dastjerdi J. Morphological and thermal behavior of PEX/CaCO3 Nanocomposites 2015

  13. Sibeko MA, Luyt AS. Preparation and characterisation of vinylsilane crosslinked low-density polyethylene composites filled with nano clays. Polym Bull. 2014;71:637–57. https://doi.org/10.1007/s00289-013-1083-0.

    Article  CAS  Google Scholar 

  14. Haddou G, Dandurand J, Dantras E, Maiduc H, Thai H, Giang NV, et al. Mechanical and thermal behaviour of bamboo flour-reinforced XLPE composites. J Therm Anal Calorim. 2016;124:701–8. https://doi.org/10.1007/s10973-015-5176-x.

    Article  CAS  Google Scholar 

  15. Kourtidou D, Symeou E, Terzopoulou Z, Vasileiadis I, Kehagias T, Pavlidou E, et al. Graphite reinforced silane crosslinked high density polyethylene: the effect of filler loading on the thermal and mechanical properties. Polym Compos. 2021;42:1181–97. https://doi.org/10.1002/pc.25892.

    Article  CAS  Google Scholar 

  16. Poostforush M, Azizi H, Ghasemi I. Thermal conductivity of cross-linked polyethylene composites contained nitride based ceramics. Bul Chem Commun. 2017;49:273–80.

    Google Scholar 

  17. Poostforush M, Azizi H, Ghasemi I. Thermal conductivity of silane cross-linked polyethylene composites. Bul Chem Commun. 2016;48:125–30.

    Google Scholar 

  18. Shi C, Yang J, Liu Y, Wang Y, Xu W, Xu Y, et al. Thermally conductive study of polyethylene/Al2O3 composite networks cross-linked pipes by electron beam irradiation. Chem Res Chin Univ. 2020;36:940–5. https://doi.org/10.1007/s40242-019-0008-3.

    Article  CAS  Google Scholar 

  19. Chen L, Sun Y-Y, Lin J, Du X-Z, Wei G-S, He S-J, et al. Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler. Int J Heat Mass Transf. 2015;81:457–64. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.051.

    Article  Google Scholar 

  20. Pietrak K, Wisniewski TS. A review of models for effective thermal conductivity of composite materials. J Power Technol. 2015;95:14–24.

    Google Scholar 

  21. Pietrak K, Wisniewski TS. Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials. J Power Technol. 2014;94:270–85.

    Google Scholar 

  22. NETZSCH analysing & testing, "Thermal diffusivity – Thermal conductivity. Method, technique, applications," LFA 447 NanoFlash n.d

  23. N. A. & Testing, "Differential scanning calorimetry," NETZSCH Anal. Test., vol. 2, pp. 348–355, 2021, doi: https://doi.org/10.3139/9781569906446.007. n.d.

  24. NETZSCH, "Importance of the sample geometry for LFA measurements." https://analyzing-testing.netzsch.com/en/contract-testing/tips-tricks/lfa/importance-of-the-sample-geometry-for-lfa-measurements. n.d

  25. Gauthier MA, Luo J, Calvet D, Ni C, Zhu XX, Garon M, et al. Degree of crosslinking and mechanical properties of crosslinked poly(vinyl alcohol) beads for use in solid-phase organic synthesis. Polymer. 2004;45:8201–10.

    Article  CAS  Google Scholar 

  26. Lin S, Gu L. Influence of crosslink density and stiffness on mechanical properties of type i collagen gel. Materials. 2015;8:551–60.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. de Pereira Melo R, de Aguiar VO, de Marques MFV. Silane crosslinked polyethylene from different commercial PE’s: influence of comonomer, catalyst type and evaluation of HLPB as crosslinking coagent. Mater Res. 2015;18:313–9.

    Article  Google Scholar 

  28. Dastjerdi J, Garmabi H. Influence of Nano-sized calcium carbonate on adhesion of HDPE/ cross-linked high density polyethylene multi-layer structures. Adv Polym Technol. 2016. https://doi.org/10.1002/adv.21733.

    Article  Google Scholar 

  29. Vasilev A, Lorenz T, Breitkopf C. Thermal conductivities of crosslinked polyisoprene and polybutadiene from molecular dynamics simulations. Polymers (Basel). 2021;13:315. https://doi.org/10.3390/polym13030315.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Shi T, Ma A. Recent advances in design and preparation of polymer-based thermal management material. Polymers. 2021;13:2797. https://doi.org/10.3390/polym13162797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kostoglou N, Polychronopoulou K, Rebholz C. Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum. 2015;112:42–5. https://doi.org/10.1016/j.vacuum.2014.11.009.

    Article  ADS  CAS  Google Scholar 

  32. Chaurasia A, Parashar A, Mulik RS. Effect of hexagonal boron nitride nanoplatelet on crystal nucleation, mechanical behavior, and thermal stability of high-density polyethylene-based nanocomposites. Macromol Mater Eng. 2020;305:2000248. https://doi.org/10.1002/mame.202000248.

    Article  CAS  Google Scholar 

  33. Huang J, Fu P, Li W, Xiao L, Chen J, Nie X. Influence of crosslinking density on the mechanical and thermal properties of plant oil-based epoxy resin. RSC Adv. 2022;12:23048–56. https://doi.org/10.1039/D2RA04206A.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Said A, Nawar A, Elsayed A, Abdullah M, Kamel S. Enhancing electrical, thermal, and mechanical properties of HV cross-linked polyethylene insulation using silica nanofillers. J Mater Eng Perform. 2021. https://doi.org/10.1007/s11665-021-05488-8.

    Article  Google Scholar 

  35. Zhang X, Shen L, Wu H, Guo S. Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion. Compos Sci Technol. 2013;89:24–8. https://doi.org/10.1016/j.compscitech.2013.09.017.

    Article  CAS  Google Scholar 

  36. Bengtsson M, Oksman K. The use of silane technology in crosslinking polyethylene/wood flour composites. Compos A Appl Sci Manuf. 2006;37:752–65. https://doi.org/10.1016/j.compositesa.2005.06.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The European Union supported this work within the European Regional Development Fund under project no. POIR.01.01.01-00-0188/2 "Development of innovative geothermal systems based on new probes with increased heat exchange efficiency applicable in vertical ground heat exchangers" granted by the National Centre for Research and Development (Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Latko-Durałek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latko-Durałek, P., Sałasińska, K., Kubiś, M. et al. The composites of cross-linked polyethylene with enhanced thermal conductivity. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13000-2

Keywords

Navigation