Skip to main content
Log in

Encapsulation and functionalization strategies of organic phase change materials in medical applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Temperature control system based on organic phase change materials (PCMs) has attracted tremendous attention in medical applications owing to the obvious advantages of large heat storage, accurate temperature controlling, ease of modification, etc. In order to fully utilize the advantages of organic PCMs for better application in biomedicine, it is often necessary to encapsulate PCMs to improve their shortcomings (such as instability in form, biosafety, biocompatibility, etc.). Encapsulation techniques of PCMs can achieve the leakage free to enhance the biocompatibility and form stability. In addition, in order to be suitable for different biomedical application scenarios, more functionality needs to be given to PCM microcapsule by using modification, chemical grafting, and polymerization methods. However, in the field of biomedicine, the current researches on the biocompatibility and functional design of organic PCMs in the encapsulation process are relatively fragmented. For the reason, this review systematically summarizes the encapsulation strategies of organic PCMs including core–shell encapsulation, physical adsorption, 3D structure, and covalent bonding. Moreover, the biocompatibility and functionalization design concepts of form-stable organic PCMs are discussed in detail for improving therapeutic effect. In addition, the applications in terms of medical field (e.g., medical textiles, drug delivery, cold chain transportation of pharmaceutical preparation, medical device) are thoroughly presented based on detailed investigations. This review will provide profound insights into the encapsulation and functionalization strategies of form-stable organic PCMs and their medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

AuNC:

Gold nanocages

ASP:

Aspirin

BDO:

1,4-Butanediol

BN:

Boron nitride

CA:

Capric acid

CE6:

Chlorin e6

CNT:

Carbon nanotube

COVID-19:

Corona Virus Disease 2019

DSC:

Differential scanning calorimetry

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

DSPE-PEG5000:

1,2-Distearoyl-sn-glycero-3-phosphoe-thanolamine-N-[methoxy(poly(ethylene glycol))-5000]

DSPE-PEG2000:

1,2-Distearoyl-sn-glycero-3-phosphoe-thanolamine-N-[methoxy(poly(ethylene glycol))-2000]

EG:

Expanded graphite

EXP:

Expanded perlite

FTIR:

Fourier transform infrared

GO:

Graphene oxide

GelMA:

Methacrylate gelatin

HD:

Hexadecane

H-CuS NPs:

Hollow-structured mesoporous copper sulfide nanoparticles

HMPBs:

Prussian blue nanoparticles

H-CuS@PCM/DOX/CE6:

Hollow-structured mesoporous copper sulfide@Phase change material/Doxorubicin/Chlorin e6

LA:

Lauric acid

MDI:

4,4′-Diphenylmethane diisocyanate

MicroPCMs:

Microencapsulated PCMs

NIR:

Near-infrared

NPS:

Nanoparticles

NPs@BOD/CPT:

Nanoparticles@Boron-dipyrromethene dye/Camptothecin-11

PAA:

Polyacrylic acid

PB:

Prussian blue

PCM:

Phase change material

PC3D:

Semi-interpenetrating network structure composed of 3D network

PDA:

Polydopamine

PEG:

Polyethylene glycol

PMMA:

Polymethyl methacrylate

PS:

Polystyrene

PSEA:

Polystyrene ethyl acetate

PCM-CC:

PCM cooling clothing

PCM@HMPBs:

Phase change material@Prussian blue nanoparticles

RNA:

Ribonucleic acid

SEM:

Scanning electron microscope

SMA:

Styrene and maleic anhydride monomers

TD:

Tetradecane

TE:

Thermoelectric

TES:

Thermal energy storage

TEM:

Transmission electron microscope

TG:

Thermal gravity

UV:

Ultraviolet

T m :

Phase change temperature

3D:

Three-dimensional

ΔH m :

Enthalpy

λ :

Thermal conductivity

References

  1. Ma K, Zhang X, Ji J, Han L, Ding X, Xie W. Application and research progress of phase change materials in biomedical field. Biomater Sci. 2021;9(17):5762–80. https://doi.org/10.1039/D1BM00719J.

    Article  CAS  PubMed  Google Scholar 

  2. de Korte JQ, Bongers CC, Catoire M, Kingma BR, Eijsvogels TM. Cooling vests alleviate perceptual heat strain perceived by COVID-19 nurses. Temperature. 2022;9(1):103–13.

    Article  Google Scholar 

  3. Yang Q, Li P, Ran H, Wan J, Chen H, Chen H, et al. Polypyrrole-coated phase-change liquid perfluorocarbon nanoparticles for the visualized photothermal-chemotherapy of breast cancer. Acta Biomater. 2019;90:337–49. https://doi.org/10.1016/j.actbio.2019.03.056.

    Article  CAS  PubMed  Google Scholar 

  4. Zeng W-N, Wang D, Yu Q-P, Yu Z-P, Wang H-Y, Wu C-Y, et al. Near-infrared light-controllable multifunction mesoporous polydopamine nanocomposites for promoting infected wound healing. ACS Appl Mater Interfaces. 2022;14(2):2534–50. https://doi.org/10.1021/acsami.1c19209.

    Article  CAS  PubMed  Google Scholar 

  5. Xue J, Zhu C, Li J, Li H, Xia Y. Integration of Phase〤hange materials with electrospun fibers for promoting neurite outgrowth under controlled release. Adv Funct Mater. 2018;28(15):1705563.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Yu K, Gao X, Ren M, Jia M, Yang Y. Enhanced thermal properties of hydrate salt/poly (acrylate sodium) copolymer hydrogel as form-stable phase change material via incorporation of hydroxyl carbon nanotubes. Sol Energy Mater Sol Cells. 2020;208: 110387. https://doi.org/10.1016/j.solmat.2019.110387.

    Article  CAS  Google Scholar 

  7. Yu K, Liu Y, Yang Y. Review on form-stable inorganic hydrated salt phase change materials: preparation, characterization and effect on the thermophysical properties. Appl Energy. 2021;292: 116845. https://doi.org/10.1016/j.apenergy.2021.116845.

    Article  CAS  Google Scholar 

  8. Yu K, Jia M, Yang Y, Liu Y. A clean strategy of concrete curing in cold climate: solar thermal energy storage based on phase change material. Appl Energy. 2023;331: 120375. https://doi.org/10.1016/j.apenergy.2022.120375.

    Article  Google Scholar 

  9. Liu Y, Yu K, Lu S, Wang C, Li X, Yang Y. Experimental research on an environment-friendly form-stable phase change material incorporating modified rice husk ash for thermal energy storage. J Energy Storage. 2020;31: 101599. https://doi.org/10.1016/j.est.2020.101599.

    Article  Google Scholar 

  10. Tao J, Luan J, Liu Y, Qu D, Yan Z, Ke X. Technology development and application prospects of organic-based phase change materials: an overview. Renew Sustain Energy Rev. 2022;159: 112175. https://doi.org/10.1016/j.rser.2022.112175.

    Article  CAS  Google Scholar 

  11. Yu K, Liu Y, Jia M, Yang Y. Bio-based dual-functionalized phase change composite: ultrafast solar-to-thermal conversion and reinforced heat storage capacity. Energy Fuels. 2021;35(19):16162–73. https://doi.org/10.1021/acs.energyfuels.1c02203.

    Article  CAS  Google Scholar 

  12. Ej B, Va A. Characterisation and stability analysis of eutectic fatty acid as a low cost cold energy storage phase change material. J Energy Storage. 2020;31: 101708. https://doi.org/10.1016/j.est.2020.101708.

    Article  Google Scholar 

  13. Stamatiou A, Obermeyer M, Fischer LJ, Schuetz P, Worlitschek J. Investigation of unbranched, saturated, carboxylic esters as phase change materials. Renew Energy. 2017;108:401–9. https://doi.org/10.1016/j.renene.2017.02.056.

    Article  CAS  Google Scholar 

  14. Veerakumar C, Sreekumar A. Thermo-physical investigation and experimental discharge characteristics of lauryl alcohol as a potential phase change material for thermal management in buildings. Renew Energy. 2020;148:492–503. https://doi.org/10.1016/j.renene.2019.10.055.

    Article  CAS  Google Scholar 

  15. Eanest Jebasingh B, Valan AA. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy Storage Mater. 2020;24:52–74. https://doi.org/10.1016/j.ensm.2019.07.031.

    Article  Google Scholar 

  16. Oró E, Barreneche C, Farid MM, Cabeza LF. Experimental study on the selection of phase change materials for low temperature applications. Renew Energy. 2013;57:130–6. https://doi.org/10.1016/j.renene.2013.01.043.

    Article  Google Scholar 

  17. https://www.canwax.com/Candlemaking-FAQ_c_317.html. Viewed 07.11.23.

  18. http://www.goodwoodproducts.com/candles-FAQs.html. Viewed 05.01.16.

  19. Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: composition, properties and therapeutic strategies. Mater Sci Eng C. 2016;68:982–94.

    Article  CAS  Google Scholar 

  20. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.

    Article  Google Scholar 

  21. Choi SW, Zhang Y, Xia Y. A temperature-sensitive drug release system based on phase-change materials. Angew Chem Int Ed. 2010;49(43):7904–8.

    Article  CAS  Google Scholar 

  22. Roberts JJ, Bryant SJ. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials. 2013;34(38):9969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nguyen MK, Jeon O, Dang PN, Huynh CT, Varghai D, Riazi H, et al. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater. 2018;75:105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye K, Wang X, Cao L, Li S, Li Z, Yu L, et al. Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett. 2015;15(7):4720–9.

    Article  CAS  PubMed  Google Scholar 

  25. http://www.biopreferred.gov. Viewed 07.11.15.

  26. Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem. 2014;7(4):469–79.

    Article  CAS  Google Scholar 

  27. Mert HH, Kekevİ B, Mert EH, Mert MS. Development of composite phase change materials based on n-tetradecane and β-myrcene based foams for cold thermal energy storage applications. Thermochim Acta. 2022;707: 179116. https://doi.org/10.1016/j.tca.2021.179116.

    Article  CAS  Google Scholar 

  28. Sarı A, Alkan C, Kahraman Döğüşcü D, Biçer A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells. 2014;126:42–50. https://doi.org/10.1016/j.solmat.2014.03.023.

    Article  CAS  Google Scholar 

  29. Singh P, Sharma RK, Khalid M, Goyal R, Sarı A, Tyagi VV. Evaluation of carbon based-supporting materials for developing form-stable organic phase change materials for thermal energy storage: a review. Sol Energy Mater Sol Cells. 2022;246: 111896. https://doi.org/10.1016/j.solmat.2022.111896.

    Article  CAS  Google Scholar 

  30. Arshad A, Jabbal M, Yan Y, Darkwa J. The micro-/nano-PCMs for thermal energy storage systems: a state of art review. Int J Energy Res. 2019;43(11):5572–620. https://doi.org/10.1002/er.4550.

    Article  CAS  Google Scholar 

  31. Zhang GH, Bon SAF, Zhao CY. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Sol Energy. 2012;86(5):1149–54. https://doi.org/10.1016/j.solener.2012.01.003.

    Article  CAS  Google Scholar 

  32. Zhang Y, Jia Z, Moqeet Hai A, Zhang S, Tang B. Shape-stabilization micromechanisms of form-stable phase change materials-a review. Compos A Appl Sci Manuf. 2022;160: 107047. https://doi.org/10.1016/j.compositesa.2022.107047.

    Article  Google Scholar 

  33. Nazari M, Jebrane M, Terziev N. Multicomponent bio-based fatty acids system as phase change material for low temperature energy storage. J Energy Storage. 2021;39: 102645. https://doi.org/10.1016/j.est.2021.102645.

    Article  Google Scholar 

  34. Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31:531–42. https://doi.org/10.1016/j.rser.2013.12.033.

    Article  CAS  Google Scholar 

  35. Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. Int J Pharm. 2008;363(1–2):26–39. https://doi.org/10.1016/j.ijpharm.2008.07.018.

    Article  CAS  PubMed  Google Scholar 

  36. Werner SRL, Jones JR, Paterson AHJ, Archer RH, Pearce DL. Air-suspension particle coating in the food industry: Part I—state of the art. Powder Technol. 2007;171(1):25–33. https://doi.org/10.1016/j.powtec.2006.08.014.

    Article  CAS  Google Scholar 

  37. Borreguero AM, Valverde JL, Rodríguez JF, Barber AH, Cubillo JJ, Carmona M. Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying. Chem Eng J. 2011;166(1):384–90. https://doi.org/10.1016/j.cej.2010.10.055.

    Article  CAS  Google Scholar 

  38. Yang X, Gao N, Hu L, Li J, Sun Y. Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. J Food Eng. 2015;161:87–93. https://doi.org/10.1016/j.jfoodeng.2015.03.027.

    Article  CAS  Google Scholar 

  39. Fu Z, Su L, Li J, Yang R, Zhang Z, Liu M, et al. Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials. Thermochim Acta. 2014;590:24–9. https://doi.org/10.1016/j.tca.2014.06.008.

    Article  CAS  Google Scholar 

  40. Moghaddam MK, Mortazavi SM, Khayamian T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J Electrostat. 2015;73:56–64. https://doi.org/10.1016/j.elstat.2014.10.013.

    Article  CAS  Google Scholar 

  41. Zhang H, Wang X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Sol Energy Mater Sol Cells. 2009;93(8):1366–76. https://doi.org/10.1016/j.solmat.2009.02.021.

    Article  CAS  Google Scholar 

  42. Fang Y, Kuang S, Gao X, Zhang Z. Preparation and characterization of novel nanoencapsulated phase change materials. Energy Convers Manage. 2008;49(12):3704–7. https://doi.org/10.1016/j.enconman.2008.06.027.

    Article  CAS  Google Scholar 

  43. Zhao J, Zhou J, Li H, Li X. Cuprous oxide modified nanoencapsulated phase change materials fabricated by RAFT miniemulsion polymerization for thermal energy storage and photothermal conversion. Powder Technol. 2022;399: 117189. https://doi.org/10.1016/j.powtec.2022.117189.

    Article  CAS  Google Scholar 

  44. Park S, Lee Y, Kim YS, Lee HM, Kim JH, Cheong IW, et al. Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids Surf, A. 2014;450:46–51. https://doi.org/10.1016/j.colsurfa.2014.03.005.

    Article  CAS  Google Scholar 

  45. Chen Z-H, Yu F, Zeng X-R, Zhang Z-G. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier. Appl Energy. 2012;91(1):7–12. https://doi.org/10.1016/j.apenergy.2011.08.041.

    Article  CAS  Google Scholar 

  46. Cao L, Tang F, Fang G. Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol Energy Mater Sol Cells. 2014;123:183–8. https://doi.org/10.1016/j.solmat.2014.01.023.

    Article  CAS  Google Scholar 

  47. Yu S, Wang X, Wu D. Microencapsulation ofn-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl Energy. 2014;114:632–43. https://doi.org/10.1016/j.apenergy.2013.10.029.

    Article  CAS  Google Scholar 

  48. Guo Y, Gao Y, Han N, Zhang X, Li W. Facile microencapsulation of phase change material with organic silicon shell used for energy storage. Sol Energy Mater Sol Cells. 2022. https://doi.org/10.1016/j.solmat.2022.111718.

    Article  Google Scholar 

  49. Wang G, Xu W, Hou Q, Guo S. A simple sonochemical method for fabricating poly(methyl methacrylate)/stearic acid phase change energy storage nanocapsules. Ultrason Sonochem. 2015;27:403–7. https://doi.org/10.1016/j.ultsonch.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  50. Fortuniak W, Slomkowski S, Chojnowski J, Kurjata J, Tracz A, Mizerska U. Synthesis of a paraffin phase change material microencapsulated in a siloxane polymer. Colloid Polym Sci. 2013;291(3):725–33. https://doi.org/10.1007/s00396-012-2782-z.

    Article  CAS  PubMed  Google Scholar 

  51. Lone S, Lee HM, Kim GM, Koh W-G, Cheong IW. Facile and highly efficient microencapsulation of a phase change material using tubular microfluidics. Colloids Surf A. 2013;422:61–7. https://doi.org/10.1016/j.colsurfa.2013.01.035.

    Article  CAS  Google Scholar 

  52. Onder E, Sarier N, Cimen E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim Acta. 2008;467(1–2):63–72. https://doi.org/10.1016/j.tca.2007.11.007.

    Article  CAS  Google Scholar 

  53. Ma Y, Chu X, Li W, Tang G. Preparation and characterization of poly(methyl methacrylate-co-divinylbenzene) microcapsules containing phase change temperature adjustable binary core materials. Sol Energy. 2012;86(7):2056–66. https://doi.org/10.1016/j.solener.2012.04.008.

    Article  CAS  Google Scholar 

  54. Sari A, Alkan C, Bilgin C. Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties. Appl Energy. 2014;136:217–27. https://doi.org/10.1016/j.apenergy.2014.09.047.

    Article  CAS  Google Scholar 

  55. Cai C, Ouyang X, Zhou L, Liu G, Wang Y, Zhu G, et al. Co-solvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material. Sol Energy. 2020;199:721–30. https://doi.org/10.1016/j.solener.2020.02.071.

    Article  CAS  Google Scholar 

  56. Feczkó T, Trif L, Horák D. Latent heat storage by silica-coated polymer beads containing organic phase change materials. Sol Energy. 2016;132:405–14. https://doi.org/10.1016/j.solener.2016.03.036.

    Article  CAS  Google Scholar 

  57. Wang F, Nasajpour-Esfahani N, Alizadeh A, Smaisim GF, Abed AM, Hadrawi SK, et al. Thermal performance of a phase change material (PCM) microcapsules containing Au nanoparticles in a nanochannel: a molecular dynamics approach. J Mol Liq. 2023;373:121128.

    Article  CAS  Google Scholar 

  58. Liu Y, Kang M, Lin W, Liang C, Qu W, Wang Y, et al. Enhanced thermal performance of phase change material microcapsules using halloysite nanotubes. Appl Therm Eng. 2023;231:120965.

    Article  CAS  Google Scholar 

  59. Wang T, Jiang Y, Huang J, Wang S. High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network. Appl Energy. 2018;218:184–91. https://doi.org/10.1016/j.apenergy.2018.02.108.

    Article  CAS  Google Scholar 

  60. Ji W, Cheng X, Chen H, Li L, Li Y, Liu Z. Efficient synthesis of regular spherical GO/SiO2@ Solar Salt microcapsules to enhance heat-storage capacity and cycle stability. Energy Convers Manage. 2021;245: 114637.

    Article  CAS  Google Scholar 

  61. Kang L, Ren L, Niu H, Lv R, Guo H, Bai S. Paraffin@ SiO2 microcapsules-based phase change composites with enhanced thermal conductivity for passive battery cooling. Compos Sci Technol. 2022;230: 109756.

    Article  CAS  Google Scholar 

  62. Wang T, Wang S, Geng L, Fang Y. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network. Appl Energy. 2016;179:601–8. https://doi.org/10.1016/j.apenergy.2016.07.026.

    Article  CAS  Google Scholar 

  63. Pornea AM, Kim H. Design and synthesis of SiO2/TiO2/PDA functionalized phase change microcapsules for efficient solar-driven energy storage. Energy Convers Manage. 2021;232: 113801.

    Article  CAS  Google Scholar 

  64. Yancheshme AA, Allahdini A, Maghsoudi K, Jafari R, Momen G. Potential anti-icing applications of encapsulated phase change material–embedded coatings; a review. J Energy Storage. 2020;31: 101638.

    Article  Google Scholar 

  65. Delgado M, Lázaro A, Peñalosa C, Zalba B. Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry. Appl Therm Eng. 2014;63(1):11–22. https://doi.org/10.1016/j.applthermaleng.2013.10.011.

    Article  CAS  Google Scholar 

  66. Chinnasamy V, Heo J, Jung S, Lee H, Cho H. Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review. Energy. 2023;262: 125463. https://doi.org/10.1016/j.energy.2022.125463.

    Article  CAS  Google Scholar 

  67. Shirin-Abadi AR, Khoee S, Rahim-Abadi MM, Mahdavian AR. Kinetic and thermodynamic correlation for prediction of morphology of nanocapsules with hydrophobic core via miniemulsion polymerization. Colloids Surf A. 2014;462:18–26. https://doi.org/10.1016/j.colsurfa.2014.08.009.

    Article  CAS  Google Scholar 

  68. Zhao J, Zhou J, Li H, Li X. Cuprous oxide modified nanoencapsulated phase change materials fabricated by RAFT miniemulsion polymerization for thermal energy storage and photothermal conversion. Powder Technol. 2022. https://doi.org/10.1016/j.powtec.2022.117189.

    Article  Google Scholar 

  69. Liang Q, Pan D, Zhang X. Construction and application of biochar-based composite phase change materials. Chem Eng J. 2023;453: 139441. https://doi.org/10.1016/j.cej.2022.139441.

    Article  CAS  Google Scholar 

  70. Jeong S-G, Lee J-H, Seo J, Kim S. Thermal performance evaluation of Bio-based shape stabilized PCM with boron nitride for energy saving. Int J Heat Mass Transf. 2014;71:245–50. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.017.

    Article  CAS  Google Scholar 

  71. Tian B, Yang W, Luo L, Wang J, Zhang K, Fan J, et al. Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials. Sol Energy. 2016;127:48–55. https://doi.org/10.1016/j.solener.2016.01.011.

    Article  CAS  Google Scholar 

  72. Kashyap S, Kabra S, Kandasubramanian B. Graphene aerogel-based phase changing composites for thermal energy storage systems. J Mater Sci. 2020;55(10):4127–56. https://doi.org/10.1007/s10853-019-04325-7.

    Article  CAS  Google Scholar 

  73. Borhani SM, Hosseini MJ, Pakrouh R, Ranjbar AA, Nourian A. Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite. Renew Energy. 2021;168:1122–40. https://doi.org/10.1016/j.renene.2021.01.020.

    Article  CAS  Google Scholar 

  74. Chen L, Sun Y-Y, Lin J, Du X-Z, Wei G-S, He S-J, et al. Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler. Int J Heat Mass Transf. 2015;81:457–64. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.051.

    Article  Google Scholar 

  75. Zhang P, Xiao X, Ma ZW. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Appl Energy. 2016;165:472–510. https://doi.org/10.1016/j.apenergy.2015.12.043.

    Article  CAS  Google Scholar 

  76. Xiao Y-y, Bai D-y, Xie Z-p, Yang Z-y, Yang J-h, Qi X-d, et al. Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal management. Compos A Appl Sci Manuf. 2021;146: 106420. https://doi.org/10.1016/j.compositesa.2021.106420.

    Article  CAS  Google Scholar 

  77. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manage. 2017;134:373–81. https://doi.org/10.1016/j.enconman.2016.12.053.

    Article  CAS  Google Scholar 

  78. Wang Y, Bailey J, Zhu Y, Zhang Y, Boetcher SKS, Li Y, et al. Application of carbon nanotube prepared from waste plastic to phase change materials: The potential for battery thermal management. Waste Manag. 2022;154:96–104. https://doi.org/10.1016/j.wasman.2022.10.003.

    Article  CAS  PubMed  Google Scholar 

  79. Wang M, Zhang C, Wang J, Wang Y, Yu F. Carbon hybrid aerogel-based phase change material with reinforced energy storage and electro-thermal conversion performance for battery thermal management. J Energy Storage. 2022;52: 104905. https://doi.org/10.1016/j.est.2022.104905.

    Article  Google Scholar 

  80. Wang X, Li W, Huang Y, Zhang S, Wang K. Study on shape-stabilised paraffin-ceramsite composites with stable strength as phase change material (PCM) for energy storage. Constr Build Mater. 2023;388: 131678.

    Article  CAS  Google Scholar 

  81. Kastiukas G, Zhou X, Castro-Gomes J. Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder. Constr Build Mater. 2016;110:201–10. https://doi.org/10.1016/j.conbuildmat.2016.02.029.

    Article  CAS  Google Scholar 

  82. Ren M, Liu YS, Gao XJ. Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings. Energy. 2020. https://doi.org/10.1016/j.energy.2020.117262.

    Article  Google Scholar 

  83. Almajali M, Lafdi K, Prodhomme PH. Effect of copper coating on infiltrated PCM/foam. Energy Convers Manage. 2013;66:336–42. https://doi.org/10.1016/j.enconman.2012.12.014.

    Article  CAS  Google Scholar 

  84. Umair MM, Zhang Y, Zhang S, Jin X, Tang B. A novel flexible phase change composite with electro-driven shape memory, energy conversion/storage and motion sensing properties. J Mater Chem A. 2019;7(46):26385–92. https://doi.org/10.1039/c9ta09088f.

    Article  CAS  Google Scholar 

  85. Sun Q, Zhang N, Zhang H, Yu X, Ding Y, Yuan Y. Functional phase change composites with highly efficient electrical to thermal energy conversion. Renew Energy. 2020;145:2629–36. https://doi.org/10.1016/j.renene.2019.08.007.

    Article  CAS  Google Scholar 

  86. Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl Energy. 2013;105:229–37. https://doi.org/10.1016/j.apenergy.2013.01.005.

    Article  CAS  Google Scholar 

  87. Lu Z, Xu B, Zhang J, Zhu Y, Sun G, Li Z. Preparation and characterization of expanded perlite/paraffin composite as form-stable phase change material. Sol Energy. 2014;108:460–6. https://doi.org/10.1016/j.solener.2014.08.008.

    Article  CAS  Google Scholar 

  88. Li X, Sanjayan JG, Wilson JL. Fabrication and stability of form-stable diatomite/paraffin phase change material composites. Energy Build. 2014;76:284–94. https://doi.org/10.1016/j.enbuild.2014.02.082.

    Article  Google Scholar 

  89. Lv P, Liu C, Rao Z. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl Energy. 2016;182:475–87. https://doi.org/10.1016/j.apenergy.2016.08.147.

    Article  CAS  Google Scholar 

  90. Li M, Wu Z, Kao H, Tan J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material. Energy Convers Manage. 2011;52(11):3275–81. https://doi.org/10.1016/j.enconman.2011.05.015.

    Article  CAS  Google Scholar 

  91. Karaipekli A, Sarı A. Development and thermal performance of pumice/organic PCM/gypsum composite plasters for thermal energy storage in buildings. Sol Energy Mater Sol Cells. 2016;149:19–28. https://doi.org/10.1016/j.solmat.2015.12.034.

    Article  CAS  Google Scholar 

  92. Chen K, Yu X, Tian C, Wang J. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage. Energy Convers Manage. 2014;77:13–21. https://doi.org/10.1016/j.enconman.2013.09.015.

    Article  CAS  Google Scholar 

  93. Zhang Y, Wang L, Tang B, Lu R, Zhang S. Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure. Appl Energy. 2016;184:241–6. https://doi.org/10.1016/j.apenergy.2016.10.021.

    Article  CAS  Google Scholar 

  94. Zhang Y, Xiu J, Tang B, Lu R, Zhang S. Novel semi-interpenetrating network structural phase change composites with high phase change enthalpy. AIChE J. 2018;64(2):688–96. https://doi.org/10.1002/aic.15956.

    Article  CAS  Google Scholar 

  95. Liu Z, Tang B, Zhang S. Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy. Sol Energy Mater Sol Cells. 2020;216: 110678. https://doi.org/10.1016/j.solmat.2020.110678.

    Article  CAS  Google Scholar 

  96. Fan Y, Wang X, Zhang J, Cheng J, Lian Q. Relationship between cross-linking network structure and phase change performances toward multifunctional epoxy/bio-based wax form-stable phase change materials. Chem Eng J. 2023;454: 140221. https://doi.org/10.1016/j.cej.2022.140221.

    Article  CAS  Google Scholar 

  97. Zhao Y, Liu T, Wei Z, Zhao S, Lei J, Fu X. Towards high performance semi-interpenetrating phase change materials networks via linear polyethylene glycol-based multimerization effect. Chem Eng J. 2022;446: 136982. https://doi.org/10.1016/j.cej.2022.136982.

    Article  CAS  Google Scholar 

  98. Sundararajan S, Samui AB, Kulkarni PS. Synthesis and characterization of poly(ethylene glycol) (PEG) based hyperbranched polyurethanes as thermal energy storage materials. Thermochim Acta. 2017;650:114–22. https://doi.org/10.1016/j.tca.2017.02.011.

    Article  CAS  Google Scholar 

  99. Sundararajan S, Samui AB, Kulkarni PS. Crosslinked polymer networks of poly(ethylene glycol) (PEG) and hydroxyl terminated poly(dimethyl siloxane) (HTPDMS) as polymeric phase change material for thermal energy storage. Sol Energy. 2019;181:187–94. https://doi.org/10.1016/j.solener.2019.01.091.

    Article  CAS  Google Scholar 

  100. Cao Q, Liu P. Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur Polymer J. 2006;42(11):2931–9. https://doi.org/10.1016/j.eurpolymj.2006.07.020.

    Article  CAS  Google Scholar 

  101. Lu X, Fang C, Sheng X, Zhang L, Qu J. One-step and solvent-free synthesis of polyethylene glycol-based polyurethane as solid-solid phase change materials for solar thermal energy storage. Ind Eng Chem Res. 2019;58(8):3024–32. https://doi.org/10.1021/acs.iecr.8b05903.

    Article  CAS  Google Scholar 

  102. Su J-C, Liu P-S. A novel solid–solid phase change heat storage material with polyurethane block copolymer structure. Energy Convers Manage. 2006;47(18–19):3185–91. https://doi.org/10.1016/j.enconman.2006.02.022.

    Article  CAS  Google Scholar 

  103. Jiang Y, Ding E, Li G. Study on transition characteristics of PEG/CDA solid-solid phase change materials. Polymer. 2002;43:117–22.

    Article  CAS  Google Scholar 

  104. Li W-D, Ding E-Y. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Sol Energy Mater Sol Cells. 2007;91(9):764–8. https://doi.org/10.1016/j.solmat.2007.01.011.

    Article  CAS  Google Scholar 

  105. Sarı A, Alkan C, Lafçı Ö. Synthesis and thermal properties of poly(styrene-co-ally alcohol)-graft-stearic acid copolymers as novel solid–solid PCMs for thermal energy storage. Sol Energy. 2012;86(9):2282–92. https://doi.org/10.1016/j.solener.2012.04.018.

    Article  CAS  Google Scholar 

  106. Sarı A, Biçer A, Alkan C. Thermal energy storage characteristics of poly(styrene-co-maleic anhydride)-graft-PEG as polymeric solid–solid phase change materials. Sol Energy Mater Sol Cells. 2017;161:219–25. https://doi.org/10.1016/j.solmat.2016.12.001.

    Article  CAS  Google Scholar 

  107. Alkan C, Sarı A, Biçer A. Thermal energy storage by poly(styrene-co-p-stearoylstyrene) copolymers produced by the modification of polystyrene. J Appl Polym Sci. 2012;125(5):3447–55. https://doi.org/10.1002/app.36527.

    Article  CAS  Google Scholar 

  108. Sarı A, Alkan C, Biçer A, Karaipekli A. Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials. Sol Energy Mater Sol Cells. 2011;95(12):3195–201. https://doi.org/10.1016/j.solmat.2011.07.003.

    Article  CAS  Google Scholar 

  109. Sarı A, Alkan C, Biçer A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid–solid phase change materials for thermal energy storage. Mater Chem Phys. 2012;133(1):87–94. https://doi.org/10.1016/j.matchemphys.2011.12.056.

    Article  CAS  Google Scholar 

  110. Hu J, Yu H, Chen Y, Zhu M. Study on phase-change characteristics of PET-PEG copolymers. J Macromol Sci Part B. 2006;45(4):615–21. https://doi.org/10.1080/00222340600770210.

    Article  CAS  Google Scholar 

  111. Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev. 2008;12(9):2438–58. https://doi.org/10.1016/j.rser.2007.06.009.

    Article  CAS  Google Scholar 

  112. Li Z, Yuan J. Phase change microcapsules with high encapsulation efficiency using Janus silica particles as stabilizers and their application in cement. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.124971.

    Article  Google Scholar 

  113. Wang X, Zhang C, Wang K, Huang Y, Chen Z. Highly efficient photothermal conversion capric acid phase change microcapsule: Silicon carbide modified melamine urea formaldehyde. J Colloid Interface Sci. 2021;582:30–40. https://doi.org/10.1016/j.jcis.2020.08.014.

    Article  CAS  PubMed  Google Scholar 

  114. Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A. 2015;3(21):11624–30. https://doi.org/10.1039/c5ta01852h.

    Article  CAS  Google Scholar 

  115. Shi J, Li M. Lightweight mortar with paraffin/expanded vermiculite-diatomite composite phase change materials: Development, characterization and year-round thermoregulation performance. Sol Energy. 2021;220:331–42. https://doi.org/10.1016/j.solener.2021.03.053.

    Article  CAS  Google Scholar 

  116. Fatahi H, Claverie JP, Poncet S. Characterization by differential scanning calorimetry of thermal storage properties of organic PCMs with operating temperature of 150° C. J Chem Thermodyn. 2023;186: 107136.

    Article  CAS  Google Scholar 

  117. Zhang Y, Feng D, Zhang X, Feng Y. Directional enhancement and potential reduction of thermal conductivity induced by one-dimensional nanoparticle addition in pure PCMs. Int J Heat Mass Transf. 2023;215: 124478.

    Article  CAS  Google Scholar 

  118. Xing L, Xie K, Zheng Y, Hou B, Huang L. A thermal balance method for measuring thermal conductivity by compensation of electric cooling or heating based on thermoelectric modules. Int J Therm Sci. 2023;189: 108264.

    Article  CAS  Google Scholar 

  119. Samiyammal P, Fuskele V, Fakruddin Babavali SK, Mohammed Khan N, Shoukhatulla Ansari M, Sakhare DT. Experimental investigations on thermal conductivity and thermal stability of the PCM using Nano-MgO. Mater Today Proc. 2022;69:759–63. https://doi.org/10.1016/j.matpr.2022.07.158.

    Article  CAS  Google Scholar 

  120. Miró L, Barreneche C, Ferrer G, Solé A, Martorell I, Cabeza LF. Health hazard, cycling and thermal stability as key parameters when selecting a suitable phase change material (PCM). Thermochim Acta. 2016;627–629:39–47. https://doi.org/10.1016/j.tca.2016.01.014.

    Article  CAS  Google Scholar 

  121. Zhu C, Huo D, Chen Q, Xue J, Shen S, Xia Y. A eutectic mixture of natural fatty acids can serve as the gating material for near-infrared-triggered drug release. Adv Mater. 2017;29(40):1703702.

    Article  Google Scholar 

  122. Shi B, Ren N, Gu L, Xu G, Wang R, Zhu T, et al. Theranostic nanoplatform with hydrogen sulfide activatable NIR responsiveness for imaging-guided on-demand drug release. Angew Chem Int Ed. 2019;58(47):16826–30. https://doi.org/10.1002/anie.201909883.

    Article  CAS  Google Scholar 

  123. Qiu J, Xie M, Wu T, Qin D, Xia Y. Gold nanocages for effective photothermal conversion and related applications. Chem Sci. 2020;11(48):12955–73.

    Article  CAS  Google Scholar 

  124. Shen S, Zhu C, Huo D, Yang M, Xue J, Xia Y. A hybrid nanomaterial for the controlled generation of free radicals and oxidative destruction of hypoxic cancer cells. Angew Chem Int Ed. 2017;56(30):8801–4. https://doi.org/10.1002/anie.201702898.

    Article  CAS  Google Scholar 

  125. Moon GD, Choi SW, Cai X, Li W, Cho EC, Jeong U, et al. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc. 2011;133(13):4762–5. https://doi.org/10.1021/ja200894u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cheng H, Huo D, Zhu C, Shen S, Wang W, Li H, et al. Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages. Biomaterials. 2018;178:517–26. https://doi.org/10.1016/j.biomaterials.2018.03.058.

    Article  CAS  PubMed  Google Scholar 

  127. Wang Y, Brown P, Xia Y. Swarming towards the target. Nat Mater. 2011;10(7):482–3.

    Article  CAS  PubMed  Google Scholar 

  128. Sun T, Wang Y, Wang Y, Xu J, Zhao X, Vangveravong S, et al. Using SV119-gold nanocage conjugates to eradicate cancer stem cells through a combination of photothermal and chemo therapies. Adv Healthc Mater. 2014;3(8):1283–91. https://doi.org/10.1002/adhm.201400026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang ONXML, Juliano RL. Targeted intracellular delivery of antisense oligonucleotides via conjugation with small-molecule ligands. J Am Chem Soc. 2010;132(26):8848–9.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wang Y, Xu J, Xia X, Yang M, Vangveravong S, Chen J, et al. SV119-gold nanocage conjugates: a new platform for targeting cancer cellsvia sigma-2 receptors. Nanoscale. 2012;4(2):421–4. https://doi.org/10.1039/C1NR11469G.

    Article  CAS  PubMed  Google Scholar 

  131. Song X, Chen Q, Liu Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015;8(2):340–54. https://doi.org/10.1007/s12274-014-0620-y.

    Article  CAS  Google Scholar 

  132. Chen H, Ma Y, Wang X, Zha Z. Multifunctional phase-change hollow mesoporous Prussian blue nanoparticles as a NIR light responsive drug co-delivery system to overcome cancer therapeutic resistance. J Mater Chem B. 2017;5(34):7051–8. https://doi.org/10.1039/C7TB01712J.

    Article  CAS  PubMed  Google Scholar 

  133. Seo SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, et al. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials. 2014;35(10):3309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41(9):3679–98. https://doi.org/10.1039/C2CS15308D.

    Article  CAS  PubMed  Google Scholar 

  135. Qiu J, Huo D, Xue J, Zhu G, Liu H, Xia Y. Encapsulation of a phase-change material in nanocapsules with a well-defined hole in the wall for the controlled release of drugs. Angew Chem Int Ed. 2019;58(31):10606–11. https://doi.org/10.1002/anie.201904549.

    Article  CAS  Google Scholar 

  136. Zhang E. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles? Mater Sci Eng, C. 2019;109: 110548.

    Google Scholar 

  137. Bayer IS, Biswas A, Ellialtioglu G. Fabrication of super water repellent silver flake/copolymer blend films and their potential as smart fabrics. Polym Compos. 2011;32(4):576–85.

    Article  CAS  Google Scholar 

  138. Zhang X, Wang X, Wu D. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy. 2016;111:498–512.

    Article  CAS  Google Scholar 

  139. Bo-An Y, Yi-Lin K, Yi L, Chap-Yung Y, Qing-Wen S. Thermal regulating functional performance of PCM garments. Int J Cloth Sci Technol. 2004;16(1/2):84–96.

    Article  Google Scholar 

  140. Vesna I, Zoran A, Vesna V, et al. Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. J Mater Sci. 2009;44(15):3983–90.

    Article  Google Scholar 

  141. Nelson G. Application of microencapsulation in textiles. Int J Pharm. 2002;242(1–2):55–62.

    Article  CAS  PubMed  Google Scholar 

  142. Jusu MO, Glauser G, Seward JF, Bawoh M, Tempel J, Friend M, et al. Rapid establishment of a cold chain capacity of –60°C or colder for the STRIVE ebola vaccine trial during the ebola outbreak in sierra leone. J Infectious Dis. 2018;217(suppl_1):S48–55. https://doi.org/10.1093/infdis/jix336.

    Article  CAS  Google Scholar 

  143. Ryu T-K, Baek S-W, Kang R-H, Jeong K-Y, Jun D-R, Choi S-W. Photodynamic and photothermal tumor therapy using phase-change material nanoparticles containing chlorin e6 and nanodiamonds. J Control Release. 2018;270:237–45. https://doi.org/10.1016/j.jconrel.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  144. Arnold WT, Adrianus PD, Jason WS, Koen JW. Implantable device with heat storage. US; 2012.

  145. Bryant YG, Colvin DP. Fiber with reversible enhanced thermal storage properties and fabrics made therefrom. Google Patents; 1988.

  146. Ying BA, Kwok YL, Li Y, Zhu QY, Yeung CY. Assessing the performance of textiles incorporating phase change materials. Polym Testing. 2004;23(5):541–9.

    Article  CAS  Google Scholar 

  147. Bryant YG, Colvin DP. Fabric with reversible enhanced thermal properties. WO; 1994.

  148. Pause B. Textiles with improved thermal capabilities through the application of Phase Change Material (PCM) microcapsules. Melliand Textilber. 2000;81:E179–80.

    CAS  Google Scholar 

  149. Mondal S. Phase change materials for smart textiles: an overview. Appl Therm Eng. 2008;28(11–12):1536–50. https://doi.org/10.1016/j.applthermaleng.2007.08.009.

    Article  CAS  Google Scholar 

  150. Salaün F, Devaux E, Bourbigot S, Rumeau P. Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochim Acta. 2010;506(1–2):82–93.

    Article  Google Scholar 

  151. Sánchez P, Sánchez-Fernandez MV, Romero A, Rodríguez JF, Sánchez-Silva L. Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta. 2010;498(1):16–21. https://doi.org/10.1016/j.tca.2009.09.005.

    Article  CAS  Google Scholar 

  152. Pause B. Nonwoven protective garments with thermo-regulating properties. J Ind Text. 2003;33(2):93–9.

    Article  CAS  Google Scholar 

  153. Pause B. Nonwoven protective garments. Asian Textile J-Bombay-. 2004;13(4):62–4.

    CAS  Google Scholar 

  154. Reinertsen RE, Færevik H, Holbø K, Nesbakken R, Reitan J, Røyset A, et al. Optimizing the performance of phase-change materials in personal protective clothing systems. Int J Occup Saf Ergon. 2008;14(1):43–53. https://doi.org/10.1080/10803548.2008.11076746.

    Article  PubMed  Google Scholar 

  155. Inuteq. https://inuteq.com/news-media/. Accessed 7 April 2021.

  156. Hu C, Wang Z, Bo R, Li C, Meng X. Effect of the cooling clothing integrating with phase change material on the thermal comfort of healthcare workers with personal protective equipment during the COVID-19. Case Stud Therm Eng. 2023;42: 102725. https://doi.org/10.1016/j.csite.2023.102725.

    Article  Google Scholar 

  157. Pause B. Phase change materials show potential for medical applications. Tech Text Int. 1999;9:23–6.

    Google Scholar 

  158. Shabeer MP, Abiramalatha T, Smith A, Shrestha P, Rebekah G, Meghala A, et al. Comparison of two low-cost methods of cooling neonates with hypoxic ischemic encephalopathy. J Trop Pediatr. 2016;63(3):174–81. https://doi.org/10.1093/tropej/fmw067.

    Article  Google Scholar 

  159. Miracradle, MiraCradle® website. http://www.miracradle.com/. Accessed 5 March 2021.

  160. Zhang X. 3: Heat-storage and thermo-regulated textiles and clothing. In: Tao X, editor. Smart Fibres, Fabrics and Clothing. Woodhead Publishing; 2001. p. 34–57.

    Chapter  Google Scholar 

  161. B P. 4 - Application of phase change and shape memory materials in medical textiles. In: Van Langenhove L, editor. Smart Textiles for Medicine and Healthcare. Woodhead Publishing; 2007. p. 74–87.

  162. Buckley T. Phase change thermal control materials ,method and apparatus. US; 2001.

  163. Xiao C, Hg B, Gh B, Dj C, Lx B, Sc B, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater. 2020;26:129–37.

    Article  Google Scholar 

  164. Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: a review. Eur Polymer J. 2019;111:134–51.

    Article  CAS  Google Scholar 

  165. Martin C, LiLow W, Gupta A, Cairul Iqbal Mohd Amin M, Radecka I, Britland S, et al. Strategies for antimicrobial drug delivery to biofilm. Curr Pharm Design. 2015;21(1):43–66.

    Article  CAS  Google Scholar 

  166. Vowden K, Vowden P. Wound dressings: principles and practice. Surgery. 2014;32(9):462–7.

    Google Scholar 

  167. Zhang K, Lv H, Zheng Y, Yao Y, Li X, Yu J. Corrigendum to “Nanofibrous hydrogels embedded with phase-change materials: Temperature-responsive dressings for accelerating skin wound healing” [Compos. Commun. 25 (2021) 100752]. Compos Commun. 2021;2022(30): 101091. https://doi.org/10.1016/j.coco.2022.101091.

    Article  Google Scholar 

  168. Tirri T, Aubert M, Wilén C-E, Pfaendner R, Hoppe H. Novel tetrapotassium azo diphosphonate (INAZO) as flame retardant for polyurethane adhesives. Polym Degrad Stab. 2012;97(3):375–82. https://doi.org/10.1016/j.polymdegradstab.2011.12.005.

    Article  CAS  Google Scholar 

  169. Liang S, Neisius NM, Gaan S. Recent developments in flame retardant polymeric coatings. Prog Org Coat. 2013;76(11):1642–65. https://doi.org/10.1016/j.porgcoat.2013.07.014.

    Article  CAS  Google Scholar 

  170. Zhang L, Zhang M, Hu L, Zhou Y. Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind Crops Prod. 2014;52:380–8. https://doi.org/10.1016/j.indcrop.2013.10.043.

    Article  CAS  Google Scholar 

  171. Stirn Z, Colovic M, Vasiljevic J, Sobak M, Zitko G, Korosin NC, et al. Effect of bridged DOPO/polyurethane nanocomposites on solar absorber coatings with reduced flammability. Sol Energy. 2022;231:104–14. https://doi.org/10.1016/j.solener.2021.11.046.

    Article  CAS  Google Scholar 

  172. Visakh PM, Semkin AO, Rezaev IA, Fateev AV. Review on soft polyurethane flame retardant. Constr Build Mater. 2019. https://doi.org/10.1016/j.conbuildmat.2019.116673.

    Article  Google Scholar 

  173. Zhang Q, Chi H, Tang M, Chen J, Li G, Liu Y, et al. Mixed surfactant modified graphene oxide nanocarriers for DOX delivery to cisplatin-resistant human ovarian carcinoma cells. RSC Adv. 2016;6(90):87258–69. https://doi.org/10.1039/c6ra17609g.

    Article  CAS  Google Scholar 

  174. Zhang Y, Umair MM, Zhang S, Tang B. Phase change materials for electron-triggered energy conversion and storage: a review. J Mater Chem A. 2019;7(39):22218–28. https://doi.org/10.1039/c9ta06678k.

    Article  CAS  Google Scholar 

  175. Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev. 2020;49(4):1041–56. https://doi.org/10.1039/C9CS00129H.

    Article  CAS  PubMed  Google Scholar 

  176. Lin H, Chen Y, Shi J. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev. 2018;47(6):1938–58. https://doi.org/10.1039/C7CS00471K.

    Article  CAS  PubMed  Google Scholar 

  177. Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232: 119707. https://doi.org/10.1016/j.biomaterials.2019.119707.

    Article  CAS  PubMed  Google Scholar 

  178. Huang X, Zhang W, Guan G, Song G, Zou R, Hu J. Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc Chem Res. 2017;50(10):2529–38. https://doi.org/10.1021/acs.accounts.7b00294.

    Article  CAS  PubMed  Google Scholar 

  179. Wang S, Liu H, Wu D, Wang X. Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery. J Colloid Interface Sci. 2021;583:470–86. https://doi.org/10.1016/j.jcis.2020.09.073.

    Article  CAS  PubMed  Google Scholar 

  180. Li Q, Sun L, Hou M, Chen Q, Yang R, Zhang L, et al. Phase-change material packaged within hollow copper sulfide nanoparticles carrying doxorubicin and chlorin e6 for fluorescence-guided trimodal therapy of cancer. ACS Appl Mater Interfaces. 2018;11(1):417–29.

    Article  PubMed  Google Scholar 

  181. Xue J, Zhu C, Li J, Li H, Xia Y. Integration of phase-change materials with electrospun fibers for promoting neurite outgrowth under controlled release. Adv Func Mater. 2018;28(15):1705563.

    Article  Google Scholar 

  182. Zhang S, Li Q, Yang N, Shi Y, Ge W, Wang W, et al. Phase-change materials based nanoparticles for controlled hypoxia modulation and enhanced phototherapy. Adv Func Mater. 2019;29(49):1906805.

    Article  CAS  Google Scholar 

  183. Liu Y, Xie M, Xu E, Gao X, Yang Y, Deng H. Development of calcium silicate-coated expanded clay based form-stable phase change materials for enhancing thermal and mechanical properties of cement-based composite. Sol Energy. 2018;174:24–34. https://doi.org/10.1016/j.solener.2018.08.085.

    Article  CAS  Google Scholar 

  184. Qing G, Zhao X, Gong N, Chen J, Li X, Gan Y, et al. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nat Commun. 2019;10(1):4336. https://doi.org/10.1038/s41467-019-12313-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kretschmer V, Karger R. Neue Richtlinien zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Hmotherapie) – nderungen, Interpretationen und Kommentar (Teil 2). Infus Ther Transfus Med. 2001;28(2):82–94.

    Google Scholar 

  186. Derkenne C, Travers S, Kedzierewicz R, Jost D, Prunet B, Martinaud C. Performances of iceless containers for lightweight transport of Red Cell Concentrate units during military operations. Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine. 2020;27(2):98–102. https://doi.org/10.1016/j.tracli.2020.02.001.

    Article  CAS  PubMed  Google Scholar 

  187. World Health O. Temperature sensitivity of vaccines. Geneva: World Health Organization; 2006.

    Google Scholar 

  188. Zhao Y, Zhang X, Xu X, Zhang S. Development of composite phase change cold storage material and its application in vaccine cold storage equipment. J Energy Storage. 2020;30: 101455.

    Article  Google Scholar 

  189. Xu X, Zhang X, Liu S. Experimental study on cold storage box with nanocomposite phase change material and vacuum insulation panel. Int J Energy Res. 2018;42(14):4429–38.

    Article  Google Scholar 

  190. Xiaofeng X, Xuelai Z. Simulation and experimental investigation of a multi-temperature insulation box with phase change materials for cold storage. J Food Eng. 2021;292: 110286.

    Article  Google Scholar 

  191. Zhao J, Long J, Du Y, Zhou J, Wang Y, Miao Z, et al. Recyclable low-temperature phase change microcapsules for cold storage. J Colloid Interface Sci. 2020;564:286–95.

    Article  CAS  PubMed  Google Scholar 

  192. Stritih U, Butala V. RETRACTED: Experimental investigation of energy saving in buildings with PCM cold storage. Int J Refrig. 2010;33(8):1676–83. https://doi.org/10.1016/j.ijrefrig.2010.07.017.

    Article  Google Scholar 

  193. Dongoran A, Setiawan A, editors. Evaluation on performance of cold storage box enveloped with phase change materials. Journal of Physics: Conference Series; 2019: IOP Publishing.

  194. Dong B, Li S, Zhang X, Wang J, Peng H. Synthesis and characterization of nanoalumina and CNTs-reinforced microcapsules with n-dodecane as a phase change material for cold energy storage. Energy Fuels. 2020;34(6):7700–8. https://doi.org/10.1021/acs.energyfuels.0c01381.

    Article  CAS  Google Scholar 

  195. Song Y, Zhang N, Jing Y, Cao X, Yuan Y, Haghighat F. Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage. Energy. 2019;189: 116175.

    Article  CAS  Google Scholar 

  196. Zhao Y, Zhang X, Xu X, Zhang S. Development, characterization and modification study of eutectic fatty alcohol for cold energy storage application. J Therm Anal Calorim. 2020;146(3):1133–47. https://doi.org/10.1007/s10973-020-10114-1.

    Article  CAS  Google Scholar 

  197. Güngör Ertuğral T, Danışman M, Oral A. Microencapsulation of n-tridecane / n-tetradecane eutectic mixture with poly(methyl methacrylate) shell for candidate for food packaging thermal energy storage material. Polym-Plast Technol Mater. 2022. https://doi.org/10.1080/25740881.2022.2124875.

    Article  Google Scholar 

  198. Li Y, Zhang X, Munyalo JM, Tian Z, Ji J. Preparation and thermophysical properties of low temperature composite phase change material octanoic-lauric acid/expanded graphite. J Mol Liq. 2019;277:577–83. https://doi.org/10.1016/j.molliq.2018.12.111.

    Article  CAS  Google Scholar 

  199. Zhang Y, Zhao Q, Gao Z, Chang J. Microstructure control of AH3 gel formed in various calcium sulfoaluminate cements as a function of pH. ACS Sustain Chem Eng. 2021;9(34):11534–47. https://doi.org/10.1021/acssuschemeng.1c03886.

    Article  CAS  Google Scholar 

  200. Ying T, Su D, Bai J. Organic phase change compound materials for non-freezing cold chain. Trans Chin Soc Agric Mach. 2017;48(08):309–14.

    Google Scholar 

  201. Zhang X, Zhou S, Liu S, Li Y, Xu X, Wang Y, et al. Cold storage characteristics of n-octanoic-lauric acid nanocomposite phase change materials. Tianjin Daxue Xuebao/J Tianjin Univ Ence Technol. 2019;52:71–7.

    Google Scholar 

  202. Jiang L, Wang RZ, Roskilly AP. Development and thermal characteristics of a novel composite oleic acid for cold storage. Int J Refrig. 2019;100:55–62. https://doi.org/10.1016/j.ijrefrig.2019.01.025.

    Article  CAS  Google Scholar 

  203. Trivedi GVN, Parameshwaran R. Micro/nanoencapsulation of dimethyl adipate with melamine formaldehyde shell as phase change material slurries for cool thermal energy storage. Chem Thermodyn Therm Anal. 2022;6: 100037. https://doi.org/10.1016/j.ctta.2022.100037.

    Article  Google Scholar 

  204. openPR, Dulas donates two solar direct drive (SDD) refrigerators to Cameroon, Press release from 06–23–2021, https://www.openpr.com/news/2312278/. Accessed 7 July 2021.124–33. https://doi.org/10.1016/j.culher.2023.05.018.

  205. Sonoco Thermosave, Sonoco ThermoSafe launches reusable container for blood transport & storage. https://www.thermosafe.com/blog/sonoco-thermosafe-launches-reusable-container-blood-transport-storage/, 2020. Accessed 9 March 2021.

  206. Grim TE, Haines JR. Orthopedic device having gel pad with phase change material. US; 1990.

  207. Heim WP, Olichney M. Improved electrosurgical instrument. US; 2001.

  208. Kamen D, Kerwin JM, David Blumberg J, Durand KA, Gregory R. Lanier J, Gerald M. Guay et al. Infusion pump apparatus, method and system. US; 2021.

  209. Choi J, Dun C, Forsythe C, Gordon MP, Urban JJ. Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer. J Mater Chem A. 2021;9(28):15696–703. https://doi.org/10.1039/D1TA01911B.

    Article  CAS  Google Scholar 

  210. Bianco N, Busiello S, Iasiello M, Mauro GM. Finned heat sinks with phase change materials and metal foams: Pareto optimization to address cost and operation time. Appl Therm Eng. 2021;197: 117436. https://doi.org/10.1016/j.applthermaleng.2021.117436.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China (No. 51902068) and the assistance provided by Ms. Le Tkhu Chang in responding to the reviewers' comments.

Author information

Authors and Affiliations

Authors

Contributions

QZ, SP, and YL contributed to conceptualization; QZ, KY, JL, and QQ performed formal analysis and investigation; QZ and YP performed writing—original draft preparation; SP and YL performed writing—review and editing, and supervision.

Corresponding authors

Correspondence to Shuang Pan or Yushi Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yu, K., Pan, Y. et al. Encapsulation and functionalization strategies of organic phase change materials in medical applications. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-12999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-12999-8

Keywords

Navigation