Skip to main content
Log in

Augmenting the heat transfer performance of automobile radiators by combining surface modification and nanofluid techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, an experimental exploration was conducted on a surface-modified fuel stack radiator to examine the heat transfer rate with nanofluids. The inner and outer surfaces of the fins and the outer surface of the tube were roughened using a shot blasting process. Nanofluids were formulated with different volume fractions, including 0.05, 0.15, and 0.3% of functionalized graphene nanoplatelets (FGNPs) dispersed in a water/ethylene glycol mixture (45:55 by volume). A remarkable improvement in thermal conductivity, enhancement up to 10.2%, was observed at 0.3 vol % of FGNPs, specifically at 50 °C. An impressive 85.3% enhancement in CHTC is observed at 40 °C inlet temperature, and MFR of 0.057 kg s–1 and 93.11% at 50 °C is noted with a loading concentration of 0.3 vol % of FGNPs. Nusselt number is enhanced by 67.07% at 40 °C and 74.12% at 50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The experimental datasets supporting the results of this article are included within the article.

Abbreviations

Al:

Aluminum

Al2O3 :

Aluminum oxide

BL:

Boundary layer

CHTC:

Convective heat transfer coefficient

CNT:

Carbon nanotubes

Cu:

Copper

CuO:

Copper oxide

CS:

Colloidal stability

DSC:

Differential scanning calorimeter

DW:

Deionized water

EG:

Ethylene glycol

ELS:

Electrophoretic light scattering

GNP:

Graphene nanoplatelets

GO:

Graphene oxide

FCV:

Flow control valve

FGNPs:

Functionalized graphene nanoplatelets

FCEVs:

Fuel cell electric vehicles

FE-SEM:

Field emission scanning electron microscopy

ff :

Friction factor

H2O:

Water

HTF:

Heat transfer fluid

HRSEM:

High-resolution scanning electron microscopy

ICE:

Internal combustion engine

LPM:

Liter per minute

MFR:

Mass flow rate

MWCNT:

Multi-walled carbon nanotubes

Nu:

Nusselt number

PSD:

Particle size distribution

SEM:

Scanning electron microscope

SHC:

Specific heat capacity

SS:

Stainless steel

VFs:

Volume fractions

TC:

Thermal conductivity

TEM:

Transmission electron microscope

TiO2 :

Titanium dioxide

ZP:

Zeta potential

ZnO:

Zinc oxide

µ :

Dynamic viscosity (Pa s)

c p :

Specific heat capacity (J kg1 K1)

g :

Acceleration due to gravity (m s2)

k :

Thermal conductivity (W m1 K1)

ρ :

Density (kg. m3)

ϕ :

Mass fraction/Volume concentration

References

  1. Abbas F, Ali HM, Shaban M, Janjua MM, Shah TR, Doranehgard MH, Ahmadlouydarab M, Farukh F. Towards convective heat transfer optimization in aluminum tube automotive radiators: potential assessment of novel Fe2O3-TiO2/water hybrid nanofluid. J Taiwan Inst Chem Eng. 2021;124:424–36.

    Article  CAS  Google Scholar 

  2. Arqub OA. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int J Numer Methods Heat Fluid Flow. 2018;28(4):828–56.

    Article  Google Scholar 

  3. Abu Arqub O. Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method. Int J Numer Methods Heat Fluid Flow. 2020;30(11):4711–33.

    Article  Google Scholar 

  4. Afzal A, Khan SA, Saleel CA. Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids. Mater Res Express. 2019;6(11):1150d8.

    Article  Google Scholar 

  5. Afzal A, Nawfal I, Mahbubul IM, Kumbar SS. An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim. 2019;135(1):393–418.

    Article  CAS  Google Scholar 

  6. Afzal A, Islam MT, Kaladgi AR, Manokar AM, Samuel OD, Mujtaba MA, Soudagar MEM, Fayaz H, Ali HM. Experimental investigation on the thermal performance of inserted helical tube three-fluid heat exchanger using graphene/water nanofluid. J Therm Anal Calorim. 2021;147:1–14.

    Google Scholar 

  7. Arqub OA, Al-Smadi M. Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm. J Porous Media. 2020;23(8):783–804.

    Article  Google Scholar 

  8. Arqub OA, Shawagfeh N. Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J Porous Media. 2019;22(4):411–34.

    Article  Google Scholar 

  9. Arivazhagan S, Balaji T. Experimental investigation of an automobile radiator using carbon based hybrid nano coolant. Int J Therm Sci. 2023;193: 108497.

    Article  Google Scholar 

  10. Blasius, H. The boundary layers in fluids with little friction (No. 1256). National Advisory Committee for Aeronautics.1950

  11. Bilen K, Cetin M, Gul H, Balta T. The investigation of groove geometry effect on heat transfer for internally grooved tubes. Appl Therm Eng. 2009;29(4):753–61.

    Article  CAS  Google Scholar 

  12. Bhuvaneshwaran K, Govindasamy PK. Technical assessment of novel organic Rankine cycle driven cascade refrigeration system using environmental friendly refrigerants: 4E and optimization approaches. Environ Sci Pollut Res. 2023;30(12):35096–114.

    Article  Google Scholar 

  13. Çetin İ, Sezici E, Karabulut M, Avci E, Polat F. A comprehensive review of battery thermal management systems for electric vehicles. Proc Inst Mech Eng Part E: J Process Mech Eng. 2023;237(3):989–1004.

    Article  Google Scholar 

  14. Choi, S.U. and Eastman, J.A., 1995. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab.(ANL), Argonne, IL (United States).

  15. Cunanan C, Tran M-K, Lee Y, Kwok S, Leung V, Fowler M. A review of heavy-duty vehicle powertrain technologies: diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technol. 2021;3(2):474–89.

    Article  Google Scholar 

  16. Dawson DA, Trass O. Mass transfer at rough surfaces. Int J Heat Mass Transf. 1972;15(7):1317–36.

    Article  CAS  Google Scholar 

  17. Devireddy S, Mekala CSR, Veeredhi VR. Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. Int Commun Heat Mass Transf. 2016;78:121–6.

    Article  CAS  Google Scholar 

  18. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf. 1985;12(1):3–22.

    Article  Google Scholar 

  19. GaneshKumar P, Sakthivadivel D, Prabakaran R, Vigneswaran S, SakthiPriya M, Thakur AK, Sathyamurthy R, Kim SC. Exploring the thermo-physical characteristic of novel multi-wall carbon nanotube—Therminol-55-based nanofluids for solar-thermal applications. Environ Sci Pollut Res. 2022;29:1–12.

    Article  Google Scholar 

  20. Ganesh Kumar P, Prabakaran R, Sakthivadivel D, Thangapandian N, Velraj R, Kim SC. Effect of shot blasting on droplet contact angle of carbon aided phase change nanocomposites. Surf Eng. 2021;37(8):1002–11.

    Article  CAS  Google Scholar 

  21. Guo J, Li Z, Wei L, Fangming J. A novel thermal management system with a heat-peak regulator for fuel cell vehicles. J Clean Prod. 2023;414:137712.

    Article  Google Scholar 

  22. Kasu PR, Ganesh NB, Kumar KS, Siva KN, Goud SK, Bhaskar D. Analysis of heat dissipation in radiator of SI engine. Int Res J Eng Technol. 2017;4(05):160–6.

    Google Scholar 

  23. Kumar PG, Vigneswaran VS, Balaji K, Vinothkumar S, Prabakaran R, Sakthivadivel D, Meikandan M, Kim SC. Augmented v-corrugated absorber plate using shot-blasting for solar air heater–energy, exergy, economic, and environmental (4E) analysis. Process Saf Environ Prot. 2022;1(165):514–31.

    Article  Google Scholar 

  24. Kumar PG, Vigneswaran VS, Sivalingam V, Velraj R, Kim SC, Ramkumar V. Enhancing heat transfer performance of automotive radiator with H2O/activated carbon nanofluids. J Mol Liq. 2023;1(371): 121153.

    Article  Google Scholar 

  25. Kumaresan V, Velraj R. Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta. 2012;545:180–6.

    Article  CAS  Google Scholar 

  26. Kim SC, Poongavanam G, Duraisamy S, Parasuraman S, Megaraj M. Experimental investigations of stability, density, thermal conductivity, and electrical conductivity of solar glycol-amine-functionalized graphene and MWCNT-based hybrid nanofluids. Environ Sci Pollut Res. 2022;29:1–15.

    Article  Google Scholar 

  27. Lolja SA. Momentum and mass transfer on sandpaper-roughened surfaces in pipe flow. Int J Heat Mass Transf. 2005;48(11):2209–18.

    Article  CAS  Google Scholar 

  28. Mahmoudi, C., Flah, A. and Sbita, L. November. An overview of electric vehicle concept and power management strategies. In 2014 international conference on electrical sciences and technologies in Maghreb (CISTEM) (pp. 1–8). IEEE. 2014

  29. Mansir IB, Singh PK, Abed AM, Ameen HFM, Khan SA, Usmani AY, Ali R, Ali HE, Algarni H, Wae-hayee M. Investigating the effects of employing a cooling radiator on MHD natural convection by injecting MWCNTs into water. Ain Shams Eng J. 2023;14:102216.

    Article  Google Scholar 

  30. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm FluidSci. 1988;1:3–17.

    Article  Google Scholar 

  31. Mohideen MM, Subramanian B, Sun J, Ge J, Guo H, Radhamani AV, Ramakrishna S, Liu Y. Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles. Renew Sustain Energy Rev. 2023;174: 113153.

    Article  CAS  Google Scholar 

  32. Mhamed M’B, Sidik NAC, Akhbar MFA, Mamat R, Najafi G. Experimental study on thermal performance of MWCNT nanocoolant in Perodua Kelisa 1000cc radiator system. Int Commun Heat Mass Transf. 2016;76:156–61.

    Article  Google Scholar 

  33. Naphon P, Nuchjapo M, Kurujareon J. Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib. Energy Convers Manage. 2006;47(18–19):3031–44.

    Article  CAS  Google Scholar 

  34. Ouria M, Delgado J, Moura P, de Almeida AT. Multi-criteria decision-nmaking in decarbonizing urban transportation systems: a case study from Tabriz-Iran. Transp Res Part D: Transp Environ. 2023;122:103854.

    Article  Google Scholar 

  35. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  36. Petukhov, B.S. Heat transfer and friction in turbulent pipe flow with variable physical properties. In Advances in heat transfer (Vol. 6, pp. 503–564). Elsevier. 1970

  37. Poongavanam GK, Ramalingam V. Characteristics investigation on thermophysical properties of synthesized activated carbon nanoparticles dispersed in solar glycol. Int J Therm Sci. 2019;1(136):15–32.

    Article  Google Scholar 

  38. Postlethwaite J, Lotz U. Mass transfer at erosion-corrosion roughened surfaces. Can J Chem Eng. 1988;66(1):75–8.

    Article  CAS  Google Scholar 

  39. Poongavanam GK, Ramalingam V. Effect of shot peening on enhancing the heat transfer performance of a tubular heat exchanger. Int J Therm Sci. 2019;139:1–14.

    Article  Google Scholar 

  40. Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    Article  CAS  Google Scholar 

  41. Sadri R, Hosseini M, Kazi SN, Bagheri S, Abdelrazek AH, Ahmadi G, Zubir N, Ahmad R, Abidin NIZ. A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. J Colloid Interface Sci. 2018;509:140–52.

    Article  CAS  PubMed  Google Scholar 

  42. Selvam C, Lal DM, Harish S. Enhanced heat transfer performance of an automobile radiator with graphene based suspensions. Appl Therm Eng. 2017;123:50–60.

    Article  CAS  Google Scholar 

  43. Shankara RP, Banapurmath NR, D’Souza A, Sajjan AM, Ayachit NH, Khan TY, Badruddin IA, Kamangar S. An insight into the performance of radiator system using ethylene glycol-water based graphene oxide nanofluids. Alex Eng J. 2022;61(7):5155–67.

    Article  Google Scholar 

  44. Sivalingam V, Kumar PG, Prabakaran R, Sun J, Velraj R, Kim SC. An automotive radiator with multi-walled carbon-based nanofluids: A study on heat transfer optimization using MCDM techniques. Case Stud Therm Eng. 2022;1(29): 101724.

    Article  Google Scholar 

  45. Singh S, Jennings M, Katragadda S, Che J, Miljkovic N. System design and analysis methods for optimal electric vehicle thermal management. Appl Therm Eng. 2023;232:120990.

    Article  Google Scholar 

  46. Souza RR, Gonçalves IM, Rodrigues RO, Minas G, Miranda JM, Moreira AL, Lima R, Coutinho G, Pereira JE, Moita AS. Recent advances on the thermal properties and applications of nanofluids: from nanomedicine to renewable energies. Appl Therm Eng. 2022;201: 117725.

    Article  CAS  Google Scholar 

  47. Thesiya D, Patel H, Patange GS. A comprehensive review electronic cooling: a nanomaterial perspective. Int J Thermofluids. 2023;19:100382.

    Article  CAS  Google Scholar 

  48. Lee S, Kim MS. Stack cooling system coupled with secondary heat pump in fuel cell electric vehicles. Energy Convers Manage. 2023;284: 116961.

    Article  Google Scholar 

  49. Li Y, Taghizadeh-Hesary F. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy. 2022;160: 112703.

    Article  CAS  Google Scholar 

  50. Yang YH, Lin Q, Zhang CF, Li GQ. Study of the influence under different operating conditions on the performance of hydrogen fuel cell system for a bus. Process Saf Environ Prot. 2023;177:1027–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Poongavanam GaneshKumar, Palanichamy Sundaram, and Anbalagan Sathishkumar would like to thank the Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamil Nadu, for providing the facilities (DSC, TEMPOS) to carry out the research work.

Funding

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3-099-10).

Author information

Authors and Affiliations

Authors

Contributions

GP was involved in preparation of the manuscript, conceptualization, methodology, resources, formal analysis, writing—original draft preparation, review and editing, supervision, and investigation. PS, AS, KS, SB, PS, and MM participated in writing—original draft preparation, review and editing, and formal analysis. ANA helped in review and editing.

Corresponding author

Correspondence to GaneshKumar Poongavanam.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poongavanam, G., Sundaram, P., Sathishkumar, A. et al. Augmenting the heat transfer performance of automobile radiators by combining surface modification and nanofluid techniques. J Therm Anal Calorim 149, 4087–4102 (2024). https://doi.org/10.1007/s10973-024-12988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12988-x

Keywords

Navigation