Skip to main content
Log in

Recent techniques for cooling of concentrated photovoltaic thermal systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The energy conversion performance of commercial photovoltaic (PV) systems is only 15–20 percent; moreover, a rise in working temperature mitigates this low efficiency. To enhance their performance and prevent damage, researchers test new technologies and integrate heat recovery devices with PV systems. Concentrated photovoltaic systems (CPVs) are especially vulnerable to high radiation levels. This paper explores novel cooling techniques for PV systems, an area that has not been extensively investigated before. The cooling methods are categorized into front-surface and back-surface cooling methods, offering a unique perspective on how to keep PV systems cool. Moreover, the paper delves into the advancements made in PV cooling systems and CPVs, shedding light on the cutting-edge developments in this field. The results demonstrate the profound impact of various operational factors, such as radiation and wind speed, on the selection of suitable cooling systems or heat recovery methods. These findings unveil the crucial importance of considering these factors when choosing cooling techniques, adding a compelling dimension to the research. For example, it was depicted that optical cooling techniques can enhance the performance of PV systems by up to 4.2% and the solar-to-heat conversion efficiency by up to 47%. Furthermore, this research ventures into uncharted territory by subjecting both the front and back sides of the PV module to active and passive cooling techniques under differing work conditions. The comprehensive list provided here exhaustively describes the advantages, disadvantages, and developments of each technique, revealing the novelty of the approaches explored in this paper. It was reported that back cooling techniques can decline the cell temperature of PV systems by up to 57.8% and grow the electrical and thermal efficiencies by up to 82.6% and 97.75%, respectively. The groundbreaking nature of this research lies in its ability to empower decision-makers to select the optimal cooling system based on specific requirements and environmental factors, thereby bridging the gap between theory and practical application. The paper also introduces a new concept of cooling using hydrogel, a 3D porous network structure that can enhance photovoltaic energy conversion and storage, and reviews two recent studies that demonstrated the effectiveness of hydrogel cooling methods for PV panels. Moreover, the paper discusses the issue of dust deposition and mitigation, which affects the performance and lifetime of PV modules, and evaluates various methods for cleaning or reducing dust on PV panels, such as manual, passive, self-cleaning, and mechanical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study available from the all authors on reasonable request.

References

  1. Chauhan PJ, Reddy BD, Bhandari S, Panda SK. Battery energy storage for seamless transitions of wind generator in standalone microgrid. IEEE Trans Indust Appl. 2019;55(1):69–77.

    Article  Google Scholar 

  2. N. Pearsall, “Introduction to photovoltaic system performance,” in The Performance of Photovoltaic (PV) Systems, Elsevier, 2017, pp. 1–19.

  3. Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol Energy. 2009;83(5):614–24.

    Article  CAS  Google Scholar 

  4. Dehghan M, Rahgozar S, Pourrajabian A, Aminy M, Halek F-S. Techno-economic perspectives of the temperature management of photovoltaic (PV) power plants: a case-study in Iran. Sustain Energy Technol Assess. 2021;45: 101133.

    Google Scholar 

  5. Martínez P, Ruiz J, Martínez P, Kaiser A, Lucas M. Experimental study of the energy and exergy performance of a plastic mesh evaporative pad used in air conditioning applications. Appl Therm Eng. 2018;138:675–85.

    Article  Google Scholar 

  6. Ceylan I, Gürel AE, Demircan H, Aksu B. Cooling of a photovoltaic module with temperature controlled solar collector. Energy and Buildings. 2014;72:96–101.

    Article  Google Scholar 

  7. Sangani C, Solanki C. Experimental evaluation of V-trough (2 suns) PV concentrator system using commercial PV modules. Sol Energy Mater Sol Cells. 2007;91(5):453–9.

    Article  CAS  Google Scholar 

  8. Shanks K, Senthilarasu S, Mallick TK. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew Sustain Energy Rev. 2016;60:394–407.

    Article  Google Scholar 

  9. Bahaidarah HM, Tanweer B, Gandhidasan P, Rehman S. A combined optical, thermal and electrical performance study of a V-trough PV system—experimental and analytical investigations. Energies. 2015;8(4):2803–27.

    Article  Google Scholar 

  10. Al-Shohani WA, Al-Dadah R, Mahmoud S. Reducing the thermal load of a photovoltaic module through an optical water filter. Appl Therm Eng. 2016;109:475–86.

    Article  Google Scholar 

  11. Rosa-Clot M, Rosa-Clot P, Tina G, Ventura C. Experimental photovoltaic-thermal Power Plants based on TESPI panel. Sol Energy. 2016;133:305–14.

    Article  CAS  Google Scholar 

  12. Han X, Chen X, Wang Q, Alelyani SM, Qu J. Investigation of CoSO4-based Ag nanofluids as spectral beam splitters for hybrid PV/T applications. Sol Energy. 2019;177:387–94.

    Article  CAS  Google Scholar 

  13. Walshe J, Carron P, McCormack S, Doran J, Amarandei G. Organic luminescent down-shifting liquid beam splitters for hybrid photovoltaic-thermal (PVT) applications. Sol Energy Mater Sol Cells. 2021;219: 110818.

    Article  CAS  Google Scholar 

  14. Du M, Tang GH, Wang TM. Exergy analysis of a hybrid PV/T system based on plasmonic nanofluids and silica aerogel glazing. Sol Energy. 2019;183:501–11.

    Article  CAS  Google Scholar 

  15. Huaxu L, Fuqiang W, Dong L, Jie Z, Jianyu T. Optical properties and transmittances of ZnO-containing nanofluids in spectral splitting photovoltaic/thermal systems. Int J Heat Mass Transf. 2019;128:668–78.

    Article  Google Scholar 

  16. Li H, He Y, Wang C, Wang X, Hu Y. Tunable thermal and electricity generation enabled by spectrally selective absorption nanoparticles for photovoltaic/thermal applications. Appl Energy. 2019;236:117–26.

    Article  CAS  Google Scholar 

  17. Hjerrild NE, Crisostomo F, Chin RL, Scott JA, Amal R, Taylor RA. Experimental results for tailored spectrum splitting metallic nanofluids for c-Si, GaAs, and Ge solar cells. IEEE Journal of Photovoltaics. 2019;9(2):385–90.

    Article  Google Scholar 

  18. Abdelrazik ASS, Al-Sulaiman FAA, Saidur R. Optical behavior of a water/silver nanofluid and their influence on the performance of a photovoltaic-thermal collector. Sol Energy Mater Sol Cells. 2019;201: 110054.

    Article  CAS  Google Scholar 

  19. He Y, Hu Y, Li H. An Ag@TiO2/ethylene glycol/water solution as a nanofluid-based beam splitter for photovoltaic/thermal applications in cold regions. Energy Convers Manage. 2019;198: 111838.

    Article  CAS  Google Scholar 

  20. Abdelrazik AS, Tan KH, Aslfattahi N, Saidur R, Al‐Sulaiman FA. (220) Optical properties and stability of water‐based nanofluids mixed with reduced graphene oxide decorated with silver and energy performance investigation in hybrid photovoltaic thermal solar systems, International Journal of Energy Research, 44(14):11487-508.

  21. Han X, Chen X, Sun Y, Qu J. Performance improvement of a PV/T system utilizing Ag/CoSO4-propylene glycol nanofluid optical filter. Energy. 2020;192: 116611. https://doi.org/10.1016/j.energy.2019.116611.

    Article  CAS  Google Scholar 

  22. Zhang C, Shen C, Yang Q, Wei S, Sun C. Blended Ag nanofluids with optimized optical properties to regulate the performance of PV/T systems. Sol Energy. 2020;208:623–36. https://doi.org/10.1016/j.solener.2020.08.020.

    Article  CAS  Google Scholar 

  23. Lin J, Ju X, Xu C, Yang Y, Du X. High temperature stability and optical properties investigation of a novel ITO-Therminol 66 nanofluid for spectral splitting PV/T systems. Opt Mater. 2020;109: 110373. https://doi.org/10.1016/j.optmat.2020.110373.

    Article  CAS  Google Scholar 

  24. Huang J, Han X, Zhao X, Meng C. Facile preparation of core-shell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems. Energy. 2021;215: 119111. https://doi.org/10.1016/j.energy.2020.119111.

    Article  CAS  Google Scholar 

  25. Li B, Hong W, Li H, Lan J, Zi J. Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis. Energy. 2022;242: 123018. https://doi.org/10.1016/j.energy.2021.123018.

    Article  CAS  Google Scholar 

  26. Qi Y, Liu Z, Shi Y, Yu X, Yang B. Size optimization of nanoparticle and stability analysis of nanofluids for spectral beam splitting hybrid PV/T system. Mater Res Bull. 2023;162: 112184. https://doi.org/10.1016/j.materresbull.2021.112184.

    Article  CAS  Google Scholar 

  27. Almarzooqi N, Ahmad F, Hamid A, Ghenai C. Experimental investigation of the effect of optical filters on the performance of the solar photovoltaic system. Energy Rep. 2023;9(suppl. 3):336–44. https://doi.org/10.1016/j.egyr.2021.03.022.

    Article  Google Scholar 

  28. Slimani MEA, Amirat M, Bahria S, Kurucz I, Sellami R. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: configuration suitable for an indirect solar dryer. Energy Convers Manag. 2016;125:209–21. https://doi.org/10.1016/j.enconman.2016.05.058.

    Article  Google Scholar 

  29. Tonui J, Tripanagnostopoulos Y. Air-cooled PV/T solar collectors with low cost performance improvements. Sol Energy. 2007;81(4):498–511. https://doi.org/10.1016/j.solener.2006.06.017.

    Article  CAS  Google Scholar 

  30. Mazón-Hernández R, García-Cascales JR, Vera-García F, Sánchez-Kaiser A, Zamora-Parra B. Development of an installation to reduce the temperature of photovoltaic modules and improve their efficiency. In: Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’10) 2010

  31. Prudhvi P, Sai PC. (2012) Efficiency improvement of solar PV panels using active cooling. In: 2012 11th International Conference on Environment and Electrical Engineering (pp. 1093-1097). IEEE.https://doi.org/10.1109/EEEIC.2012.6221545.

  32. Mazón-Hernández R, García-Cascales JR, Vera-García F, Káiser A, Zamora B. Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream. Int J Photoenergy. 2013;2013: 980763. https://doi.org/10.1155/2013/980763.

    Article  Google Scholar 

  33. Moharram KA, Abd-Elhady M, Kandil H, El-Sherif H. Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng J. 2013;4(4):869–77. https://doi.org/10.1016/j.asej.2013.01.008.

    Article  Google Scholar 

  34. L. Dorobanţu and M. O. Popescu, “Increasing the efficiency of photovoltaic panels through cooling water film,” UPB Sci. Bull., Ser. C, vol. 75, no. 3, pp. 223–232, 2013.

  35. Arefin MA. Analysis of an integrated photovoltaic thermal system by top surface natural circulation of water. Front Energy Res. 2019;7:97. https://doi.org/10.3389/fenrg.2019.00097.

    Article  Google Scholar 

  36. Mah CY, Lim BH, Wong CW, Tan MH, Chong KK, Lai AC. Investigating the performance improvement of a photovoltaic system in a tropical climate using water cooling method. Energy Procedia. 2019;159:78–83. https://doi.org/10.1016/j.egypro.2018.12.012.

    Article  Google Scholar 

  37. Kumar R, Nagarajan PK, Subramani J, Natarajan E. A detailed mathematical modelling and experimental validation of top water cooled solar PV module. FME Trans. 2019;47(3):591–8. https://doi.org/10.5937/fmet1903591S.

    Article  Google Scholar 

  38. Zhu L, Raman A, Wang KX, Abou Anoma M, Fan S. Radiative cooling of solar cells. Optica. 2014;1(1):32–8. https://doi.org/10.1364/OPTICA.1.000032.

    Article  CAS  Google Scholar 

  39. Munday JN, Safi T. Radiative cooling of a GaAs solar cell to improve power conversion efficiency. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 2016 (pp. 1125-1127). IEEE.https://doi.org/10.1109/PVSC.2016.7749677.

  40. Zhao B, Hu M, Ao X, Pei G. Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Appl Energy. 2017;205:626–34. https://doi.org/10.1016/j.apenergy.2017.08.011.

    Article  Google Scholar 

  41. Zhao B, Hu M, Ao X, Huang X, Ren X, Pei G. Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis. Energy. 2019;175:677–86. https://doi.org/10.1016/j.energy.2019.03.106.

    Article  Google Scholar 

  42. Hu M, Zhao B, Li J, Wang Y, Pei G. Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system. Energy. 2017;137:419–30. https://doi.org/10.1016/j.energy.2017.03.075.

    Article  Google Scholar 

  43. Zhao B, Hu M, Ao X, Pei G. Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Sol Energy. 2018;176:248–55. https://doi.org/10.1016/j.solener.2018.10.021.

    Article  CAS  Google Scholar 

  44. Li S, Zhou Z, Liu J, Zhang J, Tang H, Zhang Z, Na Y, Jiang C. Research on indirect cooling for photovoltaic panels based on radiative cooling. Renew Energy. 2022;198:947–59. https://doi.org/10.1016/j.renene.2021.08.016.

    Article  CAS  Google Scholar 

  45. Lee E, Luo T. Black body-like radiative cooling for flexible thin-film solar cells. Sol Energy Mater Sol Cells. 2019;194:222–8. https://doi.org/10.1016/j.solmat.2019.03.001.

    Article  CAS  Google Scholar 

  46. Zaite A, Belouaggadia N, Abid C, Kaiss A, Kanso H. Integrate of night radiative cooling technology using a photovoltaic thermal collector under three different climates. Int J Thermofluids. 2022;16: 100252. https://doi.org/10.1016/j.ijft.2022.100252.

    Article  Google Scholar 

  47. Zaite A, Belouaggadia N, Abid C, Ezzine M. Performance improvement of photovoltaic cells using night radiative cooling technology in a PV/T collector. J Build Eng. 2021;42: 102843. https://doi.org/10.1016/j.jobe.2021.102843.

    Article  Google Scholar 

  48. Zhou Y, Zheng S, Zhang G. Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five climatic regions. Energy. 2020;192: 116608. https://doi.org/10.1016/j.energy.2019.12.012.

    Article  Google Scholar 

  49. Hu M, Zhao B, Ao X, Ren X, Cao J, Wang Q, Su Y, Pei G. Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling. Appl Energy. 2020;260: 114167. https://doi.org/10.1016/j.apenergy.2019.114167.

    Article  Google Scholar 

  50. Zhao B, Hu M, Ao X, Chen N, Xuan Q, Jiao D, Pei G. Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling. Appl Energy. 2019;252: 113432. https://doi.org/10.1016/j.apenergy.2019.113432.

    Article  Google Scholar 

  51. Teo HG, Lee PS, Hawlader MNA. An active cooling system for photovoltaic modules. Appl Energy. 2012;90(1):309–15. https://doi.org/10.1016/j.apenergy.2011.03.016.

    Article  Google Scholar 

  52. Ho CD, Yeh HM, Chen TC. Collector efficiency of upward-type double-pass solar air heaters with fins attached. Int Commun Heat Mass Transf. 2011;38:49–56. https://doi.org/10.1016/j.icheatmasstransfer.2010.10.002.

    Article  CAS  Google Scholar 

  53. Sajjad U, Amer M, Muhammad H, Dahiya AA, Abbas N. Cost effective cooling of photovoltaic modules to improve efficiency. Case Stud Therm Eng. 2019;14:100420. https://doi.org/10.1016/j.csite.2019.100420.

    Article  Google Scholar 

  54. Irwan YM, Leow WZ, Irwanto M, Fareq M, Amelia AR, Gomesh N, Safwati I. Analysis air cooling mechanism for photovoltaic panel by solar simulator. Int J Electr Comput Eng. 2015;5(4):636–43.

    Google Scholar 

  55. Kant K, Shukla A, Sharma A, Biwole PH. Thermal response of poly-crystalline silicon photovoltaic panels: numerical simulation and experimentally study. Sol Energy. 2016;134:147–55. https://doi.org/10.1016/j.solener.2016.04.043.

    Article  CAS  Google Scholar 

  56. Pang W, Zhang Y, Duck BC, Yu H, Song X, Yan H. Cross sectional geometries effect on the energy efficiency of a photovoltaic thermal module: numerical simulation and experimental validation. Energy. 2020;209: 118439. https://doi.org/10.1016/j.energy.2020.118439.

    Article  Google Scholar 

  57. Michael MJJ, Selvarasan I, Goic R. Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications. Renew Energy. 2016;90:95–104. https://doi.org/10.1016/j.renene.2015.12.055.

    Article  Google Scholar 

  58. Siddiqui M, Siddiqui OK, Al-Sarkhi A, Arif A, Zubair SM. A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation. Appl Energy. 2019;239:41–56. https://doi.org/10.1016/j.apenergy.2019.01.237.

    Article  Google Scholar 

  59. Park SS, Kim YJ, Kang EC, Lee EJ, Entchev E. Numerical investigations of a solar energy heat transfer performances with experimental validations in a water-based serpentine photovoltaic-thermal (PVT) collector. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11861-z.

    Article  Google Scholar 

  60. Kianifard S, Zamen M, Nejad AA. Modeling, designing and fabrication of a novel PV/T cooling system using half pipe. J Clean Prod. 2020;253: 119972. https://doi.org/10.1016/j.jclepro.2019.119972.

    Article  Google Scholar 

  61. Bevilacqua P, Bruno R, Arcuri N. Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions. Energy. 2020;195: e116950. https://doi.org/10.1016/j.energy.2020.116950.

    Article  CAS  Google Scholar 

  62. Baloch A, Bahaidarah H, Gandhidasan P, Sulaiman F. Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Convers Manag. 2015;103:14–27. https://doi.org/10.1016/j.enconman.2015.06.030.

    Article  Google Scholar 

  63. Rezvanpour M, Borooghani D, Torabi F, Pazoki M. Using CaCl2· 6H2O as a phase change material for thermo-regulation and enhancing photovoltaic panels’ conversion efficiency: experimental study and TRNSYS validation. Renew Energy. 2020;146:1907–21. https://doi.org/10.1016/j.renene.2019.07.099.

    Article  CAS  Google Scholar 

  64. Homlakorn S, Suksri A, Wongwuttanasatian T. Efficiency improvement of PV module using a binary-organic eutectic phase change material in a finned container. Energy Rep. 2022;8:121–8. https://doi.org/10.1016/j.egyr.2021.12.003.

    Article  Google Scholar 

  65. Naseer A, Jamil F, Ali HM, Ejaz A, Khushnood S, Ambreen T, Yan WM. Role of phase change materials thickness for photovoltaic thermal management. Sustain Energy Technol Assess. 2022;49:101719. https://doi.org/10.1016/j.seta.2021.101726.

    Article  Google Scholar 

  66. Soliman AS, Xu L, Dong JG, Cheng P. A novel heat sink for cooling photovoltaic systems using convex/concave dimples and multiple PCMs. Appl Therm Eng. 2022;215: 119001. https://doi.org/10.1016/j.applthermaleng.2021.119001.

    Article  Google Scholar 

  67. Metwally H, Mahmoud NA, Ezzat M, Aboelsoud W. Numerical investigation of photovoltaic hybrid cooling system performance using the thermoelectric generator and RT25 Phase change material. J Energy Storage. 2021;42: 103031. https://doi.org/10.1016/j.est.2021.103031.

    Article  Google Scholar 

  68. Ejaz A, Jamil F, Ali HM. A novel thermal regulation of photovoltaic panels through phase change materials with metallic foam-based system and a concise comparison: an experimental study. Sust Energy Technol Asses. 2022;49: 101726. https://doi.org/10.1016/j.seta.2021.101726.

    Article  Google Scholar 

  69. Sharaf M, Huzayyin AS, Yousef MS. Performance enhancement of photovoltaic cells using phase change material (PCM) in winter. Alex Eng J. 2022;61(6):4229–39. https://doi.org/10.1016/j.aej.2021.12.001.

    Article  Google Scholar 

  70. Fazal MA, Rubaiee S. Power output enhancement in photovoltaic systems through integration of TiO2-doped phase change material. J Therm Anal Calorim. 2023;148(20):11093–101. https://doi.org/10.1007/s10973-022-11686-9.

    Article  CAS  Google Scholar 

  71. Variji N, Siavashi M, Tahmasbi M, Bidabadi M. Analysis of the effects of porous media parameters and inclination angle on the thermal storage and efficiency improvement of a photovoltaic-phase change material system. J Energy Storage. 2022;50: 104690. https://doi.org/10.1016/j.est.2021.104690.

    Article  Google Scholar 

  72. Simón-Allué R, Guedea I, Villén R, Brun G. Experimental study of phase change material influence on different models of photovoltaic-thermal collectors. Sol Energy. 2019;190:1–9. https://doi.org/10.1016/j.solener.2019.08.005.

    Article  Google Scholar 

  73. Hwang Y, Park H, Lee J, Jung W. Thermal conductivity and lubrication characteristics of nanofluids. Curr Appl Phys. 2006;6:e67–71. https://doi.org/10.1016/j.cap.2005.11.071.

    Article  Google Scholar 

  74. Xu Z, Kleinstreuer C. Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers Manag. 2014;87:504–12. https://doi.org/10.1016/j.enconman.2014.07.057.

    Article  Google Scholar 

  75. R. Sathyamurthy, A. Kabeel, A. Chamkha, A. Karthick, A. M. Manokar, and M. Sumithra, “Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids,” Appl. Nanosci., pp. 1–12, 2020, https://doi.org/10.1007/s13204-020-01579-5.

  76. Ould-Lahoucine C, Ramdani H, Zied D. Energy and exergy performances of a TiO2-water nanofluid-based hybrid photovoltaic/thermal collector and a proposed new method to determine the optimal height of the rectangular cooling channel. Sol Energy. 2021;221:292–306. https://doi.org/10.1016/j.solener.2021.03.057.

    Article  CAS  Google Scholar 

  77. Fazlay R, Khairul H, Saidur R, Navid A, Likhan D. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as a new class of heat transfer fluids. Sol Energy. 2020;208:124–38. https://doi.org/10.1016/j.solener.2020.07.067.

    Article  CAS  Google Scholar 

  78. Karaaslan I, Menlik T. Numerical study of a photovoltaic thermal (PV/T) system using mono and hybrid nanofluid. Sol Energy. 2021;224:1260–70. https://doi.org/10.1016/j.solener.2021.04.017.

    Article  CAS  Google Scholar 

  79. Firoozzadeh M, Shiravi AH, Lotfi M, Aidarova S, Sharipova A. Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: a case study. Energy. 2021;225: 120219. https://doi.org/10.1016/j.energy.2021.120219.

    Article  CAS  Google Scholar 

  80. Anandaraj S, Ayyasamy M, Marquez FPG, Athikesavan MM. Experimental studies of different operating parameters on the photovoltaic thermal system using a flattened geometrical structure. Environ Sci Pollut Res. 2022. https://doi.org/10.1007/s11356-022-22261-z.

    Article  Google Scholar 

  81. Sopian K, Alwaeli AHA, Al-Shamani AN, Elbreki AM. Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems. J Therm Anal Calorim. 2019;136:147–57. https://doi.org/10.1007/s10973-018-7724-7.

    Article  CAS  Google Scholar 

  82. Hissouf M, Feddaoui M, Najim M, Charef A. Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Sol Energy. 2020;199:115–27. https://doi.org/10.1016/j.solener.2020.01.083.

    Article  CAS  Google Scholar 

  83. Hader M, Al-Kouz W. Performance of a hybrid photovoltaic/thermal system utilizing water-Al2O3 nanofluid and fins. Int J Energy Res. 2019;43(1):219–30. https://doi.org/10.1002/er.4240.

    Article  CAS  Google Scholar 

  84. Radwan A, Ookawara S, Ahmed M. Analysis and simulation of concentrating photovoltaic systems with a microchannel heat sink. Sol Energy. 2016;136:35–48. https://doi.org/10.1016/j.solener.2016.06.057.

    Article  Google Scholar 

  85. Radwan A, Ahmed M. The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems. Appl Energy. 2017;206:594–611. https://doi.org/10.1016/j.apenergy.2017.08.215.

    Article  CAS  Google Scholar 

  86. Micheli L, Sarmah N, Luo X, Reddy K, Mallick TK. Opportunities and challenges in micro-and nano-technologies for concentrating photovoltaic cooling: a review. Renew Sustain Energy Rev. 2013;20:595–610. https://doi.org/10.1016/j.rser.2012.11.053.

    Article  Google Scholar 

  87. Hernandez-Perez J, Carrillo J, Bassam A, Flota-Banuelos M, Patino-Lopez L. A new passive PV heatsink design to reduce efficiency losses: a computational and experimental evaluation. Renew Energy. 2020;147:1209–20. https://doi.org/10.1016/j.renene.2019.09.097.

    Article  Google Scholar 

  88. Gomaa MR, Hammad W, Al-Dhaifallah M, Rezk H. Performance enhancement of grid-tied PV system through proposed design cooling techniques: an experimental study and comparative analysis. Sol Energy. 2020;211:1110–27. https://doi.org/10.1016/j.solener.2020.08.039.

    Article  Google Scholar 

  89. Popovici G, Hudisteanu V, Mateescu D, Chereches C. Efficiency improvement of photovoltaic panels by using air cooled heat sinks. Energy Procedia. 2016;85:425–32. https://doi.org/10.1016/j.egypro.2015.12.297.

    Article  CAS  Google Scholar 

  90. Aldossary A, Mahmoud S, Al-Dadah R. Technical feasibility study of passive and active cooling for concentrator PV in harsh environment. Appl Therm Eng. 2016;100:490–500. https://doi.org/10.1016/j.applthermaleng.2016.02.019.

    Article  Google Scholar 

  91. Wong T, Sarikarin T, Suksri A. Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink. Sol Energy. 2020;195:47–53. https://doi.org/10.1016/j.solener.2019.11.038.

    Article  CAS  Google Scholar 

  92. Bayrak F, Oztop HF, Selimefendigil F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers Manag. 2020;212:112789. https://doi.org/10.1016/j.enconman.2020.112789.

    Article  CAS  Google Scholar 

  93. Shittu S, Li G, Zhao X, Zhou J, Ma X, Akhlaghi YG. Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe. Energy Convers Manag. 2020;207: 112515. https://doi.org/10.1016/j.enconman.2020.112515.

    Article  Google Scholar 

  94. González-Peña D, Alonso-deMiguel I, Díez-Mediavilla M, Alonso-Tristán C. Experimental analysis of a Novel PV/T panel with PCM and heat pipes. Sustainability. 2020;12(5):1753. https://doi.org/10.3390/su12051753.

    Article  Google Scholar 

  95. Brahim T, Jemni A. Parametric study of photovoltaic/thermal wickless heat pipe solar collector. Energy Convers Manag. 2021;239: 114236. https://doi.org/10.1016/j.enconman.2021.114236.

    Article  CAS  Google Scholar 

  96. Zhang T, Yan ZW, Xiao L, Fu HD, Pei G, Ji J. Experimental, study and design sensitivity analysis of a heat pipe photovoltaic/thermal system. Appl Therm Eng. 2019;162: 114318. https://doi.org/10.1016/j.applthermaleng.2019.114318.

    Article  CAS  Google Scholar 

  97. Hassan Z, Misaran MS, Siambun NJ. Experimental performance analysis of a direct evaporative cooler. J Adv Res Des. 2020;67(1):1–8.

    Google Scholar 

  98. Kashyap S, Sarkar J, Kumar A. Performance assessment of dual-mode evaporative cooler for futuristic climatic scenarios considering climate change effect. J Build Eng. 2021. https://doi.org/10.1016/j.jobe.2021.103043.

    Article  Google Scholar 

  99. Mahdi AH, Aljubury IMA. Experimental investigation of two-stage evaporative cooler powered by photovoltaic panels using underground water. J Build Eng. 2021;44: 102679. https://doi.org/10.1016/j.jobe.2020.102679.

    Article  Google Scholar 

  100. Haidar ZA, Orfi J, Kaneesamkandi Z. Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results Phys. 2018;11:690–7. https://doi.org/10.1016/j.rinp.2018.10.016.

    Article  Google Scholar 

  101. Talebnejad R, Kamfiroozi S, Ebadi H, Vahabi SH, Sepaskhah AR, Ghobadian B, Savoldi L. A new cooling method for photovoltaic panels using brine from reverse osmosis units to increase efficiency and improve productivity. Energy Convers Manag. 2022;251: e115031. https://doi.org/10.1016/j.enconman.2021.115031.

    Article  CAS  Google Scholar 

  102. Khan Y, Raman R, Rashidi MM, Caliskan H, Chauhan MK, Chauhan AK. Thermodynamic analysis and experimental investigation of the water spray cooling of photovoltaic solar panels. J Therm Anal Calorim. 2023;148(12):5591–602. https://doi.org/10.1007/s10973-022-11686-9.

    Article  CAS  Google Scholar 

  103. Nabil T, Mansour TM. Augmenting the performance of photovoltaic panel by decreasing its temperature using various cooling techniques. Results Eng. 2022;15:100564. https://doi.org/10.1016/j.rineng.2022.100564.

    Article  CAS  Google Scholar 

  104. Poddar VS, Ranawade VA, Dhokey NB. Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance. Renew Energy. 2022;182:817–26. https://doi.org/10.1016/j.renene.2021.10.040.

    Article  Google Scholar 

  105. Arkar C, Žižak T, Domjan S, Medved S. Comparative analysis of free cooling of photovoltaics–phase change versus evaporative cooling. J Energy Storage. 2022;49:104162. https://doi.org/10.1016/j.est.2022.104162.

    Article  Google Scholar 

  106. Chandan D, Arunachala UC, Varun K. Improved energy conversion of a photovoltaic module-thermoelectric generator hybrid system with different cooling techniques: indoor and outdoor performance comparison. Int J Energy Res. 2022;46(7):9498–520. https://doi.org/10.1002/er.7820.

    Article  CAS  Google Scholar 

  107. Agyekum EB, PraveenKumar S, Alwan NT, Velkin VI, Shcheklein SE. Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon. 2021;7(9): e07920. https://doi.org/10.1016/j.heliyon.2021.e07920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haidar ZA, Orfi J, Kaneesamkandi Z. Photovoltaic panels temperature regulation using evaporative cooling principle: detailed theoretical and real operating conditions experimental approaches. Energies. 2021. https://doi.org/10.3390/en1401014.

    Article  Google Scholar 

  109. Suresh M, Shanmadhi R. (2020) Studies on the performance of 150W solar photovoltaic module with evaporative cooling. InIOP Conference Series: Mater Sci Eng (Vol. 912, No. 4, p. 042016). IOP Publishing.https://doi.org/10.1088/1757-899X/912/4/042016.

  110. Kadhim AM, Aljubury IMA. Experimental evaluation of evaporative cooling for enhancing photovoltaic panels efficiency using underground water. J Eng. 2020;26(8):14–33. https://doi.org/10.31026/j.eng.2020.08.02.

    Article  Google Scholar 

  111. Mahmood DMN, Aljubury IMA. Experimental investigation of a hybrid photovoltaic evaporative cooling (PV/EC) system performance under arid conditions. Results Eng. 2022;15: 100618. https://doi.org/10.1016/j.rineng.2022.100618.

    Article  Google Scholar 

  112. Hasan IA, Kareem IS, Attar DA. Effect of evaporative cooling combined with heat sink on PV module performance. J Univ Babylon Eng Sci. 2019;27:252–63.

    Google Scholar 

  113. Barrau J, Perona A, Dollet A, Rosell J. Outdoor test of a hybrid jet impingement/micro-channel cooling device for densely packed concentrated photovoltaic cells. Sol Energy. 2014;107:113–21. https://doi.org/10.1016/j.solener.2014.05.032.

    Article  Google Scholar 

  114. Abo-Zahhad EM, Ookawara S, Radwan A, El-Shazly A, ElKady M. Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling. Energy Convers Manag. 2018;176:39–54. https://doi.org/10.1016/j.enconman.2018.09.017.

    Article  Google Scholar 

  115. Hasan HA, Sopian K, Jaaz AH, Al-Shamani AN. Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector. Sol Energy. 2017;144:321–34. https://doi.org/10.1016/j.solener.2017.01.036.

    Article  CAS  Google Scholar 

  116. Hasan HA, Sopian K, Fudholi A. Photovoltaic thermal solar water collector designed with a jet collision system. Energy. 2018;161:412–24. https://doi.org/10.1016/j.energy.2018.07.141.

    Article  Google Scholar 

  117. Bahaidarah HMS. Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics. Sol Energy. 2016;135:605–17. https://doi.org/10.1016/j.solener.2016.06.015.

    Article  Google Scholar 

  118. Liu L, Zhu L, Wang Y, Huang Q, Sun Y, Yin Z. Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations. Sol Energy. 2011;85:922–30. https://doi.org/10.1016/j.solener.2010.12.017.

    Article  CAS  Google Scholar 

  119. Xin G, Wang Y, Sun Y, Huang Q, Zhu L. Experimental study of liquid-immersion III–V multi-junction solar cells with dimethyl silicon oil under high concentrations. Energy Convers Manag. 2015;94:169–77. https://doi.org/10.1016/j.enconman.2015.01.055.

    Article  CAS  Google Scholar 

  120. El Hammoumi A, Chalh A, Allouhi A, Motahhir S, El Ghzizal A, Derouich A. Design and construction of a test bench to investigate the potential of floating PV systems. J Clean Prod. 2021;278: 123917. https://doi.org/10.1016/j.jclepro.2020.123917.

    Article  Google Scholar 

  121. Lopes MPC, Nogueira T, Santos AJL, Branco DC, Pouran H. Technical potential of floating photovoltaic systems on artificial water bodies in Brazil. Renew Energy. 2022;181:1023–33. https://doi.org/10.1016/j.renene.2021.11.042.

    Article  CAS  Google Scholar 

  122. Choi SM, Park C-D, Cho S-H, Lim B-J. Effects of wind loads on the solar panel array of a floating photovoltaic system–Experimental study and economic analysis. Energy. 2022;256: 124649. https://doi.org/10.1016/j.energy.2021.124649.

    Article  Google Scholar 

  123. Hafeez H, Janjua AK, Nisar H, Shakir S, Shahzad N, Waqas A. ke Islamabad. Sol Energy. 2022;231:355–64. https://doi.org/10.1016/j.solener.2021.10.047.

    Article  Google Scholar 

  124. Hu M, Zhao B, Ao X, Cao J, Wang Q, Riffat S, Su Y, Pei G. An analytical study of the nocturnal radiative cooling potential of typical photovoltaic/thermal module. Appl Energy. 2020;277: 115625. https://doi.org/10.1016/j.apenergy.2020.115625.

    Article  Google Scholar 

  125. Lebbi M, Touafek K, Benchatti A, Boutina L, Khelifa A, Baissi MT, et al. Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: experimental study. Appl Therm Eng. 2021;182: 116033. https://doi.org/10.1016/j.applthermaleng.2020.116033.

    Article  Google Scholar 

  126. Karunamurthy K, Murugumohankumar K, Suresh S. Use of CuO nano-material for the improvement of thermal conductivity and performance of low temperature energy storage system of solar pond. Dig J Nanomater Biostruct. 2012;7(3):1833–41.

    Google Scholar 

  127. Chandrasekar M, Suresh S, Senthilkumar T, Ganesh MK. Passive cooling of standalone flat PV module with cotton wick structures. Energy Convers Manag. 2013;71:43–50. https://doi.org/10.1016/j.enconman.2013.03.016.

    Article  CAS  Google Scholar 

  128. Kabeel AE, Abdelgaied M. Performance enhancement of a photovoltaic panel with reflectors and cooling coupled to a solar still with air injection. J Clean Prod. 2019;224:40–9. https://doi.org/10.1016/j.jclepro.2019.03.234.

    Article  CAS  Google Scholar 

  129. Rajaee F, Vaziri Rad M, Kasaeian A, Mahian O, Mon Yan W. Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink. Energy Convers Manag. 2020;212:112815. https://doi.org/10.1016/j.enconman.2020.112815.

    Article  CAS  Google Scholar 

  130. Ceylan İ, Gürel AE, Ergün A, Tabak A. Performance analysis of a concentrated photovoltaic and thermal system. Sol Energy. 2016;129:217–23. https://doi.org/10.1016/j.solener.2016.01.041.

    Article  CAS  Google Scholar 

  131. Han X, Wang Q, Zheng J, Qu J. Thermal analysis of direct liquid-immersed solar receiver for high concentrating photovoltaic system. Int J Photoenergy. 2015;2015: 841596. https://doi.org/10.1155/2015/841596.

    Article  Google Scholar 

  132. Saravanan A, Jaisankar S. Heat transfer augmentation techniques in forced flow V-trough solar collector equipped with V-cut and square cut twisted tape. Int J Therm Sci. 2019;140:59–70.

    Article  Google Scholar 

  133. Zhao Y, Gong S, Zhang C, Ge M, Xie L. Performance analysis of a solar photovoltaic power generation system with spray cooling. Case Stud Therm Eng. 2022;29: 101723. https://doi.org/10.1016/j.csite.2021.101723.

    Article  Google Scholar 

  134. Hassani S, Taylor RA, Mekhilef S, Saidur R. A cascade nanofluid-based PV/T system with optimized optical and thermal properties. Energy. 2016;112:963–75. https://doi.org/10.1016/j.energy.2016.06.114.

    Article  CAS  Google Scholar 

  135. Soliman A, Hassan H. An experimental work on the performance of solar cell cooled by flat heat pipe. J Therm Anal Calorim. 2021;146:1883–92. https://doi.org/10.1007/s10973-021-10663-0.

    Article  CAS  Google Scholar 

  136. Aslfattahi N, Saidur R, Arifutzzaman A, Abdelrazik ASS, Samylingam L, Sabri MFM, Sidik NAC. Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar system. J Therm Anal Calorim. 2022;147:1125–42. https://doi.org/10.1007/s10973-021-10799-0.

    Article  CAS  Google Scholar 

  137. Du B, Hu E, Kolhe M. Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew Sustain Energy Rev. 2012;16:6732–6. https://doi.org/10.1016/j.rser.2012.08.016.

    Article  Google Scholar 

  138. Xu Z, Kleinstreuer C. Computational analysis of nanofluid cooling of high concentration photovoltaic cells. J Therm Sci Eng Appl. 2014;6(3): 031006. https://doi.org/10.1115/1.4027379.

    Article  CAS  Google Scholar 

  139. Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng. 2016;107:870–9. https://doi.org/10.1016/j.applthermaleng.2016.07.039.

    Article  Google Scholar 

  140. Radwan A, Ahmed M, Ookawara S. Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Convers Manag. 2016;119:289–303. https://doi.org/10.1016/j.enconman.2016.04.057.

    Article  CAS  Google Scholar 

  141. An W, Wu J, Zhu T, Zhu Q. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Appl Energy. 2016;184:197–206. https://doi.org/10.1016/j.apenergy.2016.10.032.

    Article  CAS  Google Scholar 

  142. Jin J, Jing D. A novel liquid optical filter based on magnetic electrolyte nanofluids for hybrid photovoltaic/thermal solar collector application. Sol Energy. 2017;155:51–61. https://doi.org/10.1016/j.solener.2017.06.010.

    Article  CAS  Google Scholar 

  143. Zarma I, Ahmed M, Ookawara S. Enhancing the performance of concentrator photovoltaic systems using nanoparticle-phase change material heat sinks. Energy Convers Manag. 2019;179:229–42. https://doi.org/10.1016/j.enconman.2018.10.063.

    Article  CAS  Google Scholar 

  144. Abo-Zahhad EM, Ookawara S, Esmail MFC, El Shazly AH, Elkady MF, Radwan A. Thermal management of high concentrator solar cell using new designs of stepwise varying width microchannel cooling scheme. Appl Therm Eng. 2020;172: 115124. https://doi.org/10.1016/j.applthermaleng.2020.115124.

    Article  Google Scholar 

  145. Awad M, Radwan A, Abdelrehim O, Emam M, Shmroukh AN, Ahmed M. Performance evaluation of concentrator photovoltaic systems integrated with a new jet impingement-microchannel heat sink and heat spreader. Sol Energy. 2020;199:852–63. https://doi.org/10.1016/j.solener.2020.02.078.

    Article  CAS  Google Scholar 

  146. Ali AY, Abo-Zahhad EM, Elqady HI, Rabie M, Elkady MF, Ookawara S, El-Shazly AH, Radwan A. Thermal analysis of high concentrator photovoltaic module using convergent-divergent microchannel heat sink design. Appl Therm Eng. 2021;25(183):116201. https://doi.org/10.1016/j.applthermaleng.2020.116201.

    Article  Google Scholar 

  147. Chen L, Deng D, Ma Q, Yao Y, Xu X. Performance evaluation of high concentration photovoltaic cells cooled by microchannels heat sink with serpentine reentrant microchannels. Appl Energy. 2022;309: 118478. https://doi.org/10.1016/j.apenergy.2021.118478.

    Article  CAS  Google Scholar 

  148. Alnajideen M, Min G. Hybrid photovoltaic-thermoelectric system using a novel spectral splitting solar concentrator. Energy Convers Manag. 2022;251: 114981. https://doi.org/10.1016/j.enconman.2021.114981.

    Article  CAS  Google Scholar 

  149. Liu Y, Liu Z, Wang Z, Sun W, Kong F. Photovoltaic passive cooling via water vapor sorption-evaporation by hydrogel. Appl Therm Eng. 2024;240: 122185. https://doi.org/10.1016/j.applthermaleng.2021.122185.

    Article  CAS  Google Scholar 

  150. Lv T, Sun L, Yang Y, Huang J. Bio-inspired hydrogel with all-weather adhesion, cooling and reusability functions for photovoltaic panels. Sol Energy. 2021;216:358–64. https://doi.org/10.1016/j.solener.2020.12.066.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, F., Sheikholeslami, M. & Ghasemian, M. Recent techniques for cooling of concentrated photovoltaic thermal systems. J Therm Anal Calorim 149, 3913–3935 (2024). https://doi.org/10.1007/s10973-024-12984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12984-1

Keywords

Navigation