Skip to main content
Log in

New correlation for transient laminar natural convection heat transfer in a differentially heated square cavity between air and a PCM layer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper proposes a new correlation to evaluate the heat transfer coefficient between a vertical wall containing a phase change material (PCM) and air in a square enclosure. This correlation was determined in order to simulate the transient process during PCM discharge and its effect on the heat transfer inside the cavity without using complex CFD models. A 2D CFD model based on the resolution of Navier–Stokes and energy equations inside the air and the PCM was previously validated. It was used to generate numerical data in order to build the proposed heat transfer correlation. The new correlation is \({\text{Nu}}={0.186\cdot {{\text{Ra}}}^{0.28}\theta }^{0.271}{{\text{Ste}}}^{0.022}\) valid for: \({10}^{5}\le {\text{Ra}} \le { 4.3 10}^{7}, 0.05 \le \theta \le 1 {\text{and}} 0.05 \le {\text{ste}} \le 0.6\). The accuracy of the proposed correlation versus the correlations established without phase change is analysed through a simplified model considering only the PCM layer and replacing the air cavity by a flux condition with an appropriate heat transfer coefficient. The relative error being lower than 1%, the new correlation shows a better agreement with the CFD results than existing correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c :

Specific heat (kJ kg1 K1)

e :

PCM thickness (m)

L :

Cavity side length (m)

f :

PCM liquid fraction (%)

g :

Gravitational acceleration (m s2)

H :

Latent heat (kJ kg1)

HTC:

Heat transfer coefficient (W m2 K1)

Nu:

Nusselt number (−)

P :

Pressure (Pa)

PCM:

Phase change material

Ra:

Rayleigh number (−)

Ste:

Stefan number (−)

Fo:

Fourier number (−)

t :

Time (s)

T :

Temperature (K)

U,V :

Velocity components (m s1)

x,y :

Cartesian coordinates (m)

X :

Length ratio (−)

Y :

Height ratio (−)

β :

Thermal expansion coefficient (K1)

ρ :

Density (kg m3)

μ :

Dynamic viscosity (kg m1 s1)

ν :

Kinematic viscosity (m2 s1)

λ :

Thermal conductivity (W m1 K1)

θ :

Dimensionless temperature (−)

α :

Thermal diffusivity(m2s1)

C :

Cold

g :

Gas

H :

Hot

l :

Liquid

s :

Solid

m :

Melting

W :

PCM/air interface

References

  1. Ostrach S. Natural convection in enclosures. J Heat Transf. 1998;110:1175–90. https://doi.org/10.1115/1.3250619.

    Article  Google Scholar 

  2. De Vahl Davis G. Natural convection of air in a square cavity: a benchmark numerical solution. Int J Numer Methods Fluids. 1983;3:249–64. https://doi.org/10.1002/fld.1650030305.

    Article  Google Scholar 

  3. Bejan A. Convection heat transfer. New York: Wiley books; 1984.

    Google Scholar 

  4. Shojaeefard MH, Jourabian M, Rabienataj Darzi AA. Interactions between hybrid nanosized particles and convection melting inside an enclosure with partially active walls: 2D lattice Boltzmann-based numerical investigation. Heat Transf. 2021;50:4908–36. https://doi.org/10.1002/htj.22109.

    Article  Google Scholar 

  5. Eckert ERG, Carlson WO. Natural convection in a layer enclosed between two plates with different temperatures. Int J Heat Mass Transf. 1961;2:106–20. https://doi.org/10.1016/0017-9310(61)90019-9.

    Article  Google Scholar 

  6. Lankhorst A.M. Laminar and turbulent natural convection in cavities: Numerical and experimental validation. Ph.D. thesis. Technology University of Delft.1991

  7. Fusegi T, Hyun JM, Kuwahara K. Three dimensional simulations of natural convection in sidewall-heated cube. Int J Numer Meth Fluids. 1991;13:857–67. https://doi.org/10.1002/fld.1650130704.

    Article  CAS  Google Scholar 

  8. Elder JW. Turbulent free convection in a vertical slot. J Fluid Mech. 1965;23:99–111.

    Article  Google Scholar 

  9. Oró E, Cabeza LF, Farid MM. Experimental and numerical analysis of a chilly bin incorporating phase change material. Appl Therm Eng. 2013;58:61–7. https://doi.org/10.1016/j.applthermaleng.2013.04.014.

    Article  Google Scholar 

  10. Mahdi JM, Lohrasbi S, Nsofor EC. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: a review. Int J Heat Mass Transf. 2019;137:630–43. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.111.

    Article  CAS  Google Scholar 

  11. Labihi A, Ouikhalfan M, Chehouani H, Benhamou B. PCM incorporation into a cavity wall as an insulator and phase shifter: experimental investigations and numerical modelling. Int J Energy Res. 2021;45:16728–40. https://doi.org/10.1002/er.6918.

    Article  Google Scholar 

  12. Ambekar S, Rath P, Bhattacharya A. A novel PCM and TCE based thermal management of battery module. Therm Sci Eng Prog. 2022. https://doi.org/10.1016/j.tsep.2022.101196.

    Article  Google Scholar 

  13. Incropera FP, DeWitt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. NewYork: Wiley; 2006. p. 116.

    Google Scholar 

  14. Bastani A, Haghighat F, Kozinski J. Designing building envelope with PCM wallboards: design tool development. Renew Sustain Energy Rev. 2015;31:554–62. https://doi.org/10.1016/j.rser.2013.12.031.

    Article  Google Scholar 

  15. Johannes K, Virgone J, TASK C. report of the Annex 23 of the International Energy Agency, applying energy storage in buildings of the future, prepared, CETHIL Thermal Center of Lyon School of Architecture .2011.

  16. Kong X, Lu S, Li Y, Huang J, Liu S. Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application. Energy Build. 2014;81:404–15. https://doi.org/10.1016/j.enbuild.2014.06.044.

    Article  Google Scholar 

  17. Zhu Y.X. Built Environment China Architecture and Building Press. Beijing. 2005.

  18. McQuiston FC, Parker JD. Heating, ventilating, and air conditioning. 6th ed. New York: Wiley books; 2005.

    Google Scholar 

  19. Potvin FM, Gosselin L. Thermal shielding of multilayer walls with phase change materials under different transient boundary conditions. Int J Therm Sci. 2009;48:1707–17. https://doi.org/10.1016/j.ijthermalsci.2009.01.010.

    Article  CAS  Google Scholar 

  20. Sathe T, Dhoble AS. Thermal analysis of an inclined heat sink with finned PCM container for solar applications. Int J Heat Mass Transf. 2019;144:118679.

    Article  Google Scholar 

  21. El Idi MM, Karkri M, Tankari MA. A passive thermal management system of Li-ion batteries using PCM composites: experimental and numerical investigations. Int J Heat Mass Transf. 2021;169:120894.

    Article  Google Scholar 

  22. Jmal I, Baccar M. Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection. Int J Heat Mass Transf. 2018;127:714–27. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.058.

    Article  Google Scholar 

  23. Kalbasi R. Introducing a novel heat sink comprising PCM and air—adapted to electronic device thermal management. Int J Heat Mass Transf. 2021;169:120914. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120914.

    Article  Google Scholar 

  24. Labihi A, Aitlahbib F, Chehouani H, Benhamou B, Ouikhalfan M, Croitoru C, Nastase I. Effect of phase change material wall on natural convection heat transfer inside an air filled enclosure. Appl Therm Eng. 2017;126:305–14. https://doi.org/10.1016/j.applthermaleng.2017.07.112.

    Article  CAS  Google Scholar 

  25. Aitlahbib F, Chehouani H. Numerical study of heat transfer inside a Keeping Warm System (KWS) incorporating phase change material. Appl Therm Eng. 2015;75:73–85. https://doi.org/10.1016/j.applthermaleng.2014.09.035.

    Article  Google Scholar 

  26. Moreno S, Hinojosa JF, Hernández-López I, Xaman J. Numerical and experimental study of heat transfer in a cubic cavity with a PCM in a vertical heated wall. Appl Therm Eng. 2020;178:115647. https://doi.org/10.1016/j.applthermaleng.2020.115647.

    Article  Google Scholar 

  27. Faraji M, Elqarnia H. Cooling management of protruding electronic components by using a phase change material heat sink. Proceeding of the 14th IEEE international conference electronics, circuits and systems (ICECS), Special Issue: IEEE Library of Congress. 2007

  28. Benard C, Gobin D, Zanoli A. Moving boundary problem: heat conduction in the solid phase of phase—change materiel during melting driven by naturel convection in the liquid. Int J Heat Mass Transf. 1981;29:1669–81. https://doi.org/10.1016/0017-9310(86)90108-0.

    Article  Google Scholar 

  29. Liu H, Awbi HB. Performance of phase change material boards under natural convection. Build Environ. 2009;44:1788–93.

    Article  Google Scholar 

  30. David D, Kuznik F, Roux JJ. Experimental investigation of natural convection near a wall containing phase change material. Int J Therm Sci. 2016;104:281–91. https://doi.org/10.1016/j.ijthermalsci.2016.01.011.

    Article  Google Scholar 

  31. Awbi H, Hatton A. Mixed convection from heated room surfaces. Energy Build. 2000;32:153–66.

    Article  Google Scholar 

  32. Khalifa MR. Validation of heat transfer coefficients on interior building surfaces using a real-sized indoor test cell. Int J Heat Mass Transf. 1990;33:2219–2219.

    Article  Google Scholar 

  33. https://www.rubitherm.eu/.Accessed 23 Sept 2022

  34. Shojaeefard MH, Jourabian M, Rabienataj Darzi AA. Rectangular heat sink filled with PCM/ hybrid nanoparticles composites and cooled by intruded T-shaped cavity: numerical investigation of thermal performance. Int Commun in Heat Mass Transf. 2021;127:105527. https://doi.org/10.1016/j.icheatmasstransfer.2021.105527.

    Article  CAS  Google Scholar 

  35. Shojaeefarda MH, Jourabian M, Rabienataj Darzib AA, Bayatc A. Inward melting inside a horizontal multilobed capsule with conductive wall affected by Ag-MgO/Water hybrid and MgO/Water nanofluids. J Heat Mass Transf Res. 2021;8:205–23.

    Google Scholar 

  36. Wei-Biao Y, Arici M. Redefined interface error, 2D verification and validation for pure solid-gallium phase change modeling by enthalpy-porosity methodology. Int Commun Heat Mass Transf. 2023;147:106952. https://doi.org/10.1016/j.icheatmasstransfer.2023.106952.

    Article  CAS  Google Scholar 

  37. Wei-Biao Y, Arici M. 3D validation, 2D feasibility, corrected and developed correlations for pure solid-gallium phase change modeling by enthalpy-porosity methodology. Int Commun Heat Mass Transf. 2023;144:106780. https://doi.org/10.1016/j.icheatmasstransfer.2023.106780.

    Article  CAS  Google Scholar 

  38. Wei-Biao Y, Arici M. False diffusion, asymmetrical interface, and equilibrious state for pure solid-gallium phase change modeling by enthalpy-porosity methodology. Int Commun Heat Mass Transf. 2023;144:106746. https://doi.org/10.1016/j.icheatmasstransfer.2023.106746.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of the RAFRIBAT project financially supported by the pars grant from the HASSAN II Academy of Sciences and Techniques, Morocco.

Author information

Authors and Affiliations

Authors

Contributions

AL and HC: writing, simulation and interpretation of the results. BB: revision and supervision the work. AM and PB: writing, revision and supervision the work.

Corresponding author

Correspondence to Abdelouhab Labihi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labihi, A., Chehouani, H., Benhamou, B. et al. New correlation for transient laminar natural convection heat transfer in a differentially heated square cavity between air and a PCM layer. J Therm Anal Calorim 149, 4033–4047 (2024). https://doi.org/10.1007/s10973-024-12982-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12982-3

Keywords

Navigation