Skip to main content
Log in

A computational note on thermal attributes of engine oil with titanium alloy and zinc oxide hybrid nanoparticles flowing over a stretching surface about a stagnation point

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research article, we intend to perform a numerical investigation of the thermal features of MHD Williamson hybrid nanofluid flow over a linearly stretching surface with viscous dissipation and nonlinear thermal radiation effects. An external magnetic field exists in the vicinity of stagnation point along with the creation of induced magnetic field due conducting fluid. A thin film of viscous and incompressible base fluid, engine oil \((EO)\), encumbered with titanium alloy \((Ti_{6} Al_{4} V)\) and zinc oxide \((ZnO)\) nanoparticles is examined taking pure nanofluid and hybrid nanofluid cases simultaneously in a single frame in Cartesian coordinates. The governing equations are first transformed to ordinary differential equations employing similarity transformations and then simulated by successive over-relaxation method. Approximate solutions are assessed through graphs for velocity, temperature and induced magnetism corresponding to the prominent parameters. A significant improvement in wear resistance, lubrication and thermal features of the engine oil has been observed due to titanium alloy and zinc oxide hybrid nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(A_{1}\) :

First Rivlin–Erickson vector

\(\mu_{\text{hnf}}\) :

Hybrid nanofluid viscosity \(({{kg}}\, {{ms}}^{-1})\)

\(k_{\text{hnf}}\) :

Thermal conductivity of hybrid nanofluid \((W \, m^{ - 1} {\text{ k}}^{ - 1} )\)

\(\rho_{\text{hnf}}\) :

Hybrid nanofluid density \(\text{kg}\, \text{ms}^{-3}\)

\(c_{\text{p}}\) :

Specific heat at constant pressure \((J \, mol^{ - 1} {\text{ k}}^{ - 1} )\)

\(\sigma_{\text{hnf}}\) :

Electrical conductivity of hybrid nanofluid (\({\text{S}}\, {\text{m}}^{-1}\))

\(b\) :

Stretching rate

\(\theta\) :

Dimensionless temperature

\(B_{0}\) :

Magnetic field strength \((kg \, s^{ - 2} \, A^{ - 1} )\)

\(\theta_{\text{w}}\) :

Temperature ratio parameter

\(k\) :

Thermal conductivity \((W \, m^{ - 1} {\text{ k}}^{ - 1} )\)

\(\omega\) :

Relaxation parameter

\(Nr\) :

Thermal radiation parameter

\(\eta_{0}\) :

Magnetic diffusivity

\(T\) :

Fluid temperature (\(k\))

\(\beta\) :

Induced magnetic field

\(T_{\text{w}}\) :

Temperature at the surface (\(k\))

\(\lambda_{0}\) :

Reciprocal magnetic Prandtl number

\(T_{\infty }\) :

Temperature far off the surface (\(k\))

\(\phi_{1}\) :

Concentration of zinc oxide nanoparticles

\(Pr\) :

Prandtl number

\(\phi_{2}\) :

Concentration of titanium alloy nanoparticles

\(Re_{\text{x}}\) :

Local Reynolds number

\(\mu_{\text{e}}\) :

Magnetic permeability

\(Ec\) :

Eckert number

\(\mu_{0}\) :

Limiting viscosity at zero shear rate

\(We\) :

Weissenberg number

\(\mu_{\infty }\) :

Limiting viscosity at infinite shear rate

\(H_{1}\) :

\(x -\) Component of induced magnetic field

\(\Gamma\) :

Time constant

\(H_{2}\) :

\(y -\) Component of induced magnetic field

\(\varepsilon\) :

Stretching ratio

\(H_{0}\) :

Strength of uniform induced magnetic field

\(\tau_{\text{w}}\) :

Wall share stress

\(Ti_{6} Al_{4} V\) :

Titanium alloy

\(ZnO\) :

Zinc oxide

\(EO\) :

Engine oil

References

  1. Choi SU, Eastman JA. Enhancing Thermal conductivity of fluids with nanoparticles. Tech rep, Argonne national lab., IL (United States), 1995

  2. Shah Z, et al. Numerical modeling on hybrid nanofluid (Fe3O4 + MWCNT/H2O) migration considering MHD effect over a porous cylinder. PLoS ONE. 2021;16: e0251744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tekir M, et al. Effect of constant magnetic field on Fe3O4-Cu/water hybrid nanofluid flow in a circular pipe. Heat Mass Transf. 2022;58:707–17.

    Article  CAS  Google Scholar 

  4. Ahmad S, et al. Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms. Ain Shams Eng J. 2022;13: 101668.

    Article  Google Scholar 

  5. Turkyilmazoglu M. Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci. 2012;84:182–7.

    Article  CAS  Google Scholar 

  6. Baranovskii ES. Flows of a polymer fluid in domain with impermeable boundaries. Comput Math Math Phys. 2014;54:1589–96.

    Article  Google Scholar 

  7. Sakiadis BC. Boundary-layer behaviour on continuous solid surface. I. boundary-layer equations for two-dimensional and axisymmetric flow. AICHE J. 1961;7:26–8.

    Article  CAS  Google Scholar 

  8. Sakiadis BC. Boundary-layer behaviour on continuous solid surfaces. II. The boundary layer on a continuous flat surface. AICHE J. 1961;7:221–5.

    Article  CAS  Google Scholar 

  9. Crane LJ. Flow past a stretching plate. Z fur Angew Math Phys. 1970;21:645–7.

    Article  Google Scholar 

  10. Andersson HI, Bech KH, Dandapat BS. Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int J Non Linear Mech. 1992;27:929–36.

    Article  Google Scholar 

  11. Andersson HI. MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 1992;95:227–30.

    Article  Google Scholar 

  12. Vishalakshi AB, et al. MHD hybrid nanofluid flow over a stretching/shrinking sheet with skin friction: effects of radiation and mass transpiration. Magnetochemistry. 2023;9:118. https://doi.org/10.3390/magnetochemistry9050118.

    Article  CAS  Google Scholar 

  13. Ahmad S, et al. Thermal characteristics of kerosene oil based hybrid nanofluids (Ag- MnZnFe2O4): a comprehensive study. Front Energy Res. 2022;10: 978819. https://doi.org/10.3389/fenrg.2022.978819.

    Article  Google Scholar 

  14. Jamshed W, et al. The improved thermal efficiency of prandtl-eyring hybrid nanofluid via classical keller box technique. Sci Rep. 2021;11:23535. https://doi.org/10.1038/s41598-021-02756-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahmad S, et al. Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol. ICHMT. 2021;129: 105708.

    CAS  Google Scholar 

  16. Ali K, et al. Simulation analysis of MHD hybrid CuAl2O3/H2O nanofluid flow with heat generation through a porous media. Int J Energy Res. 2021;45:19165–79.

    Article  CAS  Google Scholar 

  17. Aminuddin NA, et al. Impact of thermal radiation on MHD GO-Fe2O4/EG flow and heat transfer over a moving surface. Symmetry. 2023;15:584. https://doi.org/10.3390/sym15030584.

    Article  CAS  Google Scholar 

  18. Chinas-Castillo F, Spikes HA. Mechanism of action of colloidal solid dispersions. J Tribol. 2003;125:552–7.

    Article  CAS  Google Scholar 

  19. Xue Q, Liu W, Zhang Z. Friction and wear properties of a surface modified TiO2 nanoparticle as an additive in liquid paraffin. Wear. 1997;213:29–32.

    Article  CAS  Google Scholar 

  20. Riaz M, Khan N, Shehzad SA. Rheological behavior of magnetized ZnO–SAE 50 nanolubricant over riga plate: a theoretical study. Adv Mech Eng. 2023;15(3):1–15. https://doi.org/10.1177/16878132231162305.

    Article  CAS  Google Scholar 

  21. Wu YY, Tsui WC, Liu TC. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear. 2007;262:819–25. https://doi.org/10.1016/j.wear.2006.08.021.

    Article  CAS  Google Scholar 

  22. Rasheed AK, et al. Heat transfer and tribological performance of graphene nanolubricant in an internal combustion engine. Tribol Int. 2016;103:504–15.

    Article  CAS  Google Scholar 

  23. Ettefaghi EOL, et al. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nanolubricant. Int Commun Heat Mass Trans. 2013;46:142–7.

    Article  CAS  Google Scholar 

  24. Khan U, et al. Activation energy on MHD flow of titanium alloy (Ti6Al4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: dual solutions. J Mater Res Technol. 2019;9:188–99. https://doi.org/10.1016/j.jmrt.2019.10.044.

    Article  CAS  Google Scholar 

  25. Asifa, et al. Double slip effects and heat transfer characteristics for channel transport of engine oil with titanium and aluminum alloy nanoparticles: a fractional study. IEEE Access. 2021;9:52036–52. https://doi.org/10.1109/access.2021.3067937.

    Article  Google Scholar 

  26. Hiemenz K. Die Grenzschicht an einem inden gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler’s Polytech J. 1911;326:321–4.

    Google Scholar 

  27. Reddy C, Shankar B. Magneto hydrodynamics stagnation point flow of a nano fluid over an exponentially stretching sheet with an effect of chemical reaction. Heat Sour Suction Inj WJM. 2015;5:211–21.

    Google Scholar 

  28. Kai Y, et al. A case study of different magnetic strength fields and thermal energy effects in vortex generation of Ag-TiO2 hybrid nanofluid flow. Case Stud Therm Eng. 2023;47: 103115.

    Article  Google Scholar 

  29. Kai Y, et al. Thermal case study and generated vortices by dipole magnetic field in hybridized nanofluid flowing: alternating direction implicit solution. Res Phys. 2023;49: 106464.

    Google Scholar 

  30. Ahmad S, et al. A novel vortex dynamics for micropolar fluid flow in a lid-driven cavity with magnetic field localization a computational approach. Ain Shams Eng J. 2023. https://doi.org/10.1016/j.asej.2023.102448.

    Article  Google Scholar 

  31. Ahmad S, et al. Localized magnetic fields and their effects on heat transfer enhancement and vortices generation in tri-hybrid nanofluids: a novel investigation. Case Stud Therm Eng. 2023;50: 103408.

    Article  Google Scholar 

  32. Ahmad S, Cai J, Ali K. Prediction of new vortices in single-phase nanofluid due to dipole interaction. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10237-5.

    Article  Google Scholar 

  33. Ahmad S, et al. Unveiling the magic of localized magnetic field on vortex dynamics and heat transfer of tetra-hybrid nanofluid in lid-driven cavity: an insightful investigation. J Therm Anal Calorim. 2024. https://doi.org/10.1007/s10973-023-12733-w.

    Article  Google Scholar 

  34. Cramer KR, Pai S. Magnetofluid dynamics for engineers and applied physicists. New York: McGraw-Hill; 1973. p. 204–37.

    Google Scholar 

  35. Hasibi A, et al. Importance of induced magnetic field and exponential heat source on convective flow of Casson fluid in a micro-channel via AGM. Theor Appl Mech Lett. 2022;12: 100342.

    Article  Google Scholar 

  36. Iqbal Z, Azhar E, Maraj EN. Transport phenomena of carbon nanotubes and bioconvection nanoparticles on stagnation point flow in presence of induced magnetic field. Phys E: Low-Dimens Syst Nanostruct. 2017;91:128–35.

    Article  CAS  Google Scholar 

  37. Ali K, Ashraf M. Thermal reversal in MHD stagnation point flow towards a stretching sheet with induced magnetic field and viscous dissipation effects. World Appl Sci J. 2012;16:1615–25.

    Google Scholar 

  38. Faridi AA, Khan N, Ali K. A novel numerical note on the enhanced thermal features of water-ethylene glycol mixture due to hybrid nanoparticles (MnZnFe2O4–Ag) over a magnetized stretching surface. Numer Heat Trans B-Fund. 2023. https://doi.org/10.1080/10407790.2023.2296082.

    Article  Google Scholar 

  39. Williamson RV. The flow of pseudoplastic materials. Ind amp Eng Chem. 1929;21:1108–11.

    Article  CAS  Google Scholar 

  40. Mahanthesh B, et al. Exponential heat source effects on the stagnation-point heat transport of williamson nanoliquid with nonlinear boussinesq approximation. Heat Transfer. 2021;50:6645–64.

    Article  Google Scholar 

  41. Dawar A, et al. A convective flow of williamson nanofluid through cone and wedge with non-isothermal and non-isosolutal conditions: a revised buongiorno model. Case Stud Therm Eng. 2021;24: 100869. https://doi.org/10.1016/j.csite.2021.100869.

    Article  Google Scholar 

  42. Mabood F, Khan SU, Tlili I. Numerical simulations for swimming of gyrotactic microorganisms with Williamson nanofluid featuring Wu’s slip, activation energy and variable thermal conductivity. Appl Nanosci. 2023;13(1):131–44.

    Article  Google Scholar 

  43. Khan SU, et al. Thermally radiative flow of williamson nanofluid containing microorganisms with applications of heat source and activation energy. Int J Mod Phys C. 2022;33(9):2250125.

    Article  CAS  Google Scholar 

  44. Guedri K, et al. Numerical simulation for two-phase dusty thermally developed marangoni forced convective flow of williamson material: a finite difference scheme. ZAMM. 2022;103(3): e202100206.

    Article  Google Scholar 

  45. Imran U, et al. Electro-magnetic radiative flowing of williamson-dusty nanofluid along elongating sheet: nanotechnology application. Arab J Chem. 2023;16(5): 104698.

    Article  Google Scholar 

  46. Yahya AU, et al. Thermal characteristics for the flow of williamson hybrid nanofluid (MoS2 + ZnO) based with engine oil over a stretched sheet. Case Stud Therm Eng. 2021;26: 101196. https://doi.org/10.1016/j.csite.2021.101196.

    Article  Google Scholar 

  47. Wasim J, et al. Computational frame work of cattaneo-christov heat flux effects on engine oil based williamson hybrid nanofluids: a thermal case study. Case Stud Therm Eng. 2021;26: 101179. https://doi.org/10.1016/j.csite.2021.101179.

    Article  Google Scholar 

  48. Alhowaity A, et al. Numerical study of williamson hybrid nanofluid flow with thermal characteristics past over an extending surface. Heat Transfer. 2022;51:6641–55. https://doi.org/10.1002/htj.22616.

    Article  Google Scholar 

  49. Ali K, et al. Quasi-linearization analysis for heat and mass transfer of magnetically driven 3rd-grade (Cu-TiO2/engine oil) nanofluid via a convectively heated surface. ICHMT. 2022;135: 106060. https://doi.org/10.1016/j.icheatmasstransfer.2022.106060.

    Article  CAS  Google Scholar 

  50. Ahmad S, et al. Features of Cu and TiO2 in the flow of engine oil subject to thermal jump conditions. Sci Rep. 2021;11:19592. https://doi.org/10.1038/s41598-021-99045-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang X, et al. Successive over relaxation (SOR) methodology for convective triply diffusive magnetic flowing via a porous horizontal plate with diverse irreversibilities. Ain Shams Eng J. 2023;14: 102137. https://doi.org/10.1016/j.asej.2023.102137.

    Article  Google Scholar 

  52. Faridi AA, et al. Relaxation analysis and entropy simulation of triple diffusive slip effect on magnetically driven casson fluid flow. Int J Model Simul. 2024. https://doi.org/10.1080/02286203.2023.2301129.

    Article  Google Scholar 

  53. Nadeem S, Hussain ST, Lee C. Flow of a williamson fluid over a stretching sheet. Braz J Chem Eng. 2013;30(3):619–25.

    Article  CAS  Google Scholar 

  54. Khan SU, et al. Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with cattaneo-christov expressions. J Therm Anal Calorim. 2021;143:1175–86.

    Article  Google Scholar 

  55. Hayat T, et al. Stagnation point flow with cattaneo-christov heat flux and homogeneous-heterogeneous reactions. J Mol Liq. 2017;113:310–7.

    Google Scholar 

  56. Animasaun IL, et al. Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface. Surf Interfaces. 2022;28: 101654.

    Article  CAS  Google Scholar 

  57. Latha KBS, et al. Computation of stagnation coating flow of electro-conductive ternary williamson hybrid GO − AU − Co3O4/EO nanofluid with a cattaneo-christov heat flux model and magnetic induction. Sci Rep. 2023;13:10972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ali FM, et al. MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field. Appl Math Mech (Engl Ed). 2011;32:409–18.

    Article  Google Scholar 

  59. Ali K, et al. Viscous dissipation and radiation effects in MHD Stagnation point flow towards a stretching sheet with induced magnetic field. World Appl Sci J. 2012;16:1638–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Ahmed Faridi.

Ethics declarations

Conflict of interests

All authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faridi, A.A., Khan, N. & Ali, K. A computational note on thermal attributes of engine oil with titanium alloy and zinc oxide hybrid nanoparticles flowing over a stretching surface about a stagnation point. J Therm Anal Calorim 149, 3833–3849 (2024). https://doi.org/10.1007/s10973-024-12981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12981-4

Keywords

Navigation