Skip to main content
Log in

Comprehensive study of stability and thermo-physical properties of water-based CaCO3/SiO2 dual hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The most important thermal and rheological properties of water-based CaCO3/SiO2 dual hybrid nanofluid (DHNF) at overall volumetric concentrations of the nanoparticles from 0.1 to 0.5 and different volume fractions at temperatures of 15–60 °C have been studied. Prepared DHNFs consisted using SDS and ultrasonic homogenizer. Stability analysis of the DHNFs performed by changing ultrasonication time and power. The optimum consistency conditions and volume fractions of the nanoparticles determined for the prepared DHNFs. Specific heat capacity, thermal conductivity and resistivity, usual viscosity and density of the DHNFs studied, experimentally, compared with preexisting models, and finally, theoretical models with 99% precisions suggested. Maximum augmentation in thermal conductivity attained to 21.8% for 80:20 corresponding volume ratio and 0.5 vol% total concentration. At these conditions, maximum reduction in heat capacity occurred as 1.08%, and the greatest reduction in thermal resistivity got about 22.2% at 60 °C. Usual viscosity and density increased as 36.9 and 1.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\({C}_{{\text{p}}}\) :

Specific heat capacity (Jg1k1)

\(K\) :

Thermal conductivity (Wm1k1)

R :

Thermal resistivity (m kW1)

\(T\) :

Temperature (°C)

\(\rho \) :

Density (gcm3)

φ :

Volume fraction

μ :

Dynamic viscosity (mPa s)

bf :

Base fluid

nf :

Nanofluid

np :

Nanoparticle

DW:

Distilled water

SDS:

Sodium dodecyl sulfate

DHNFs:

Dual Hybrid Nanofluids

References

  1. Lund LA, et al. Magnetohydrodynamic flow of Cu–Fe 3 O 4/H 2 O hybrid nanofluid with effect of viscous dissipation: dual similarity solutions. J Therm Anal Calorim. 2021;143:915–27.

    Article  CAS  Google Scholar 

  2. Anwar T, Kumam P, Thounthong P. A comparative fractional study to evaluate thermal performance of NaAlg–MoS2–Co hybrid nanofluid subject to shape factor and dual ramped conditions. Alex Eng J. 2022;61(3):2166–87.

    Article  Google Scholar 

  3. Izady M, et al. Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: a development on Falkner-Skan problem. Chin J Phys. 2021;74:406–20.

    Article  CAS  Google Scholar 

  4. Waini I, Ishak A, Pop I. Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Phys Scr. 2019;94(10): 105219.

    Article  CAS  Google Scholar 

  5. Jamshed W, et al. Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: a Thermal case study. Case Stud Therm Eng. 2021;26: 101179.

    Article  Google Scholar 

  6. Zou Y, et al. Inspiration from a thermosensitive biomass gel: a novel method to improving the stability of core-shell “dry water” fire extinguishing agent. Powder Technol. 2019;356:383–90.

    Article  CAS  Google Scholar 

  7. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.

    Article  CAS  Google Scholar 

  8. Rostami MN, Dinarvand S, Pop I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chin J Phys. 2018;56(5):2465–78.

    Article  CAS  Google Scholar 

  9. Maddah H, et al. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102.

    Article  CAS  Google Scholar 

  10. Ho C-J, et al. Water-based suspensions of Al2O3 nanoparticles and MEPCM particles on convection effectiveness in a circular tube. Int J Therm Sci. 2011;50(5):736–48.

    Article  Google Scholar 

  11. Suresh S, et al. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf, A. 2011;388(1–3):41–8.

    Article  CAS  Google Scholar 

  12. Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res. 2011;50(6):3071–7.

    Article  CAS  Google Scholar 

  13. Baghbanzadeh M, et al. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim Acta. 2012;549:87–94.

    Article  CAS  Google Scholar 

  14. Esfe MH, et al. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transfer. 2015;66:189–95.

    Article  Google Scholar 

  15. Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf. 2016;96:513–24.

    Article  CAS  Google Scholar 

  16. Kristiawan B, et al. Heat transfer enhancement of TiO2/water nanofluid at laminar and turbulent flows: a numerical approach for evaluating the effect of nanoparticle loadings. Energies. 2018;11(6):1584.

    Article  Google Scholar 

  17. O’Hanley H, et al. Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng. 2012;4: 181079.

    Article  Google Scholar 

  18. Vanapalli S, ter Brake HJ. Assessment of thermal conductivity, viscosity and specific heat of nanofluids in single phase laminar internal forced convection. Int J Heat Mass Transf. 2013;64:689–93.

    Article  CAS  Google Scholar 

  19. Ijam A, et al. Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. Int J Heat Mass Transf. 2015;87:92–103.

    Article  CAS  Google Scholar 

  20. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Physica E. 2016;84:564–70.

    Article  CAS  Google Scholar 

  21. Azmi W, et al. Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube. Int Commun Heat Mass Transfer. 2014;59:30–8.

    Article  CAS  Google Scholar 

  22. Bahrami M, et al. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Thermal Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  23. Ajeel RK, et al. Assessment and analysis of binary hybrid nanofluid impact on new configurations for curved-corrugated channel. Adv Powder Technol. 2021;32(10):3869–84.

    Article  CAS  Google Scholar 

  24. Ajeel RK, et al. Numerical investigation of binary hybrid nanofluid in new configurations for curved-corrugated channel by thermal-hydraulic performance method. Powder Technol. 2021;385:144–59.

    Article  CAS  Google Scholar 

  25. Çiftçi E. Distilled water-based AlN+ ZnO binary hybrid nanofluid utilization in a heat pipe and investigation of its effects on performance. Int J Thermophys. 2021;42(3):38.

    Article  Google Scholar 

  26. Kumar V, Sahoo RR. Viscosity and thermal conductivity comparative study for hybrid nanofluid in binary base fluids. Heat Transf Asian Res. 2019;48(7):3144–61.

    Article  Google Scholar 

  27. Vidhya R, Balakrishnan T, Kumar BS. Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO-MgO hybrid nanofluids. Mater Today: Proc. 2021;37:3423–33.

    CAS  Google Scholar 

  28. Afshari A, et al. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%) new correlation and margin of deviation. J Therm Anal Calorim. 2018;132:1001–15.

    Article  CAS  Google Scholar 

  29. Ahmed M, et al. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid. Case Stud Ther Eng. 2015;6:77–92.

    Article  Google Scholar 

  30. Sundar LS, et al. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor–a review. Renew Sustain Energy Rev. 2017;68:185–98.

    Article  CAS  Google Scholar 

  31. Alktranee M, Bencs P. Factors affecting nanofluids behaviour: a review. Int Rev Appl Sci Eng. 2023;14(2):241–55.

    Google Scholar 

  32. Kumar L, Walvekar R, Khalid M. An overview of recent advancements and applications of hybrid nanofluids. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.02.060.

    Article  PubMed  Google Scholar 

  33. Hamzah MH, et al. Factors affecting the performance of hybrid nanofluids: a comprehensive review. Int J Heat Mass Transf. 2017;115:630–46.

    Article  CAS  Google Scholar 

  34. Çolak AB, et al. Experimental study on the specific heat capacity measurement of water-based al2o3-cu hybrid nanofluid by using differential thermal analysis method. Curr Nanosci. 2020;16(6):912–28.

    Article  Google Scholar 

  35. Yang L, et al. Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol. 2017;317:348–69.

    Article  CAS  Google Scholar 

  36. Rashmi W, et al. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci. 2011;6(6):567–79.

    Article  CAS  Google Scholar 

  37. Eapen J et al. The classical nature of thermal conduction in nanofluids. 2010.

  38. Aminian A. Predicting the effective viscosity of nanofluids for the augmentation of heat transfer in the process industries. J Mol Liq. 2017;229:300–8.

    Article  CAS  Google Scholar 

  39. Zhu D, et al. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep. 2018;8(1):5282.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yadav D, et al. Density variation in nanofluids as a function of concentration and temperature. Mater Today: Proc. 2021;46:6576–80.

    CAS  Google Scholar 

  41. Rajkotwala A, Banerjee J. Influence of rheological behavior of nanofluid on heat transfer. WSEAS Trans Heat Mass Transf. 2013;8:67–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parviz Darvishi or Abdolrasoul Pouranfard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Darvishi, P. & Pouranfard, A. Comprehensive study of stability and thermo-physical properties of water-based CaCO3/SiO2 dual hybrid nanofluid. J Therm Anal Calorim 149, 3937–3950 (2024). https://doi.org/10.1007/s10973-024-12976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12976-1

Keywords

Navigation