Skip to main content
Log in

3E analysis and multi-objective optimization of a trans-critical ejector-assisted Co2 refrigeration cycle combined with thermo-electric generator

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Conserving energy is an important factor in industry which could lead to reduce the operating costs of the system. Improving energy efficiency is a serious concern to many researchers and numerous studies have been conducted on this goal. A valuable method to locate the inefficient system components is the conventional exergy analysis. Furthermore, to estimate the cost efficiency of a thermodynamic system, exergo-economic analysis is indispensable. This study evaluates the ejector trans-critical \({{\text{CO}}}_{2}\) refrigeration cycle from exergo-economic viewpoint. The thermodynamic system was modeled using Engineering Equation Solver (EES) software. In order to utilize the waste heat of the gas cooler, a thermo-electric generator is introduced. Energy, exergy, and exergo-economic (3E) analysis has been performed. A parametric study was conducted of gas cooler pressure, low-pressure compressor outlet pressure, and evaporator pressure. Multi-criteria optimization has been conducted to optimize COP and refrigeration cost rate using NSGA-II (non-dominated sorting genetic algorithm). The results showed the system could provide a COP of 1.593 for the base case of the cycle operation. The high-priority components to improve were expansion valve, thermo-electric generator, and low-pressure compressor which had the highest exergy destruction ratio as 0.211, 0.180, and 0.158 respectively. The refrigeration cost rate was 2.898 $ h−1 for the base case of the system. Optimization results showed that the exergy efficiency and the exergy destruction ratio of the optimum design point are 0.284 and 0.574.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

e:

Specific exergy (kJ kg−1)

\(\dot{E}\) :

Exergy rate \((kW)\)

\(h\) :

Specific enthalpy \((kJ \, kg^{-1})\)

\(\dot{m}\) :

Mass flow rate \((kg \, s^{-1})\)

\(P\) :

Pressure \((kPa)\)

\(P\) :

Power \((kW)\)

\(\dot{W}\) :

Work \((kW)\)

\(\dot{Q}\) :

Heat transfer \((kW)\)

\(s\) :

Specific entropy \((kJ\, kg^{-1} \,K^{-1})\)

\(T\) :

Temperature \((K)-(^\circ C)\)

\(v\) :

Velocity \((m\,s^{-1})\)

\(x\) :

Quality

\(\dot{C}\) :

Cost rate ($ h−1)

\(c\) :

Specific exergy cost ($ GJ−1)

\(Z\) :

Investment cost of component \((\mathrm{\$})\)

\(\dot{Z}\) :

Investment cost rate of component ($ h−1)

\(\alpha\) :

Seebeck coefficient \((V \,K^{-1})\)

\(\sigma\) :

Electrical conductivity \((S\,m^{-1})\)

\(\lambda\) :

Thermal conductivity \((W\,m^{-1}\,K^{-1})\)

\(\omega\) :

Entrainment ratio of ejector

\(\eta\) :

Efficiency

\(\delta\) :

Exergy destruction ratio

\(T\) :

Thermal

\(M\) :

Mechanical

\(\text{do}\) :

Diffuser outlet

\(\text{D}\) :

Destruction

\(\text{hpc}\) :

High-pressure compressor

\(\text{lpc}\) :

Low-pressure compressor

\(\text{ex}\) :

Exergy

\(\text{F}\) :

Fuel

\(\text{P}\) :

Product

\(\text{L}\) :

Loss

\(\text{is}\) :

Isentropic

\(\text{n}\) :

Nozzle

\(\text{d}\) :

Diffuser

\(\text{m}\) :

Mixing chamber

\(\text{high}\) :

High-pressure stage

\(\text{low}\) :

Low-pressure stage

\(\text{in}\) :

Inlet

\(\text{out}\) :

Outlet

\(\text{teg}\) :

Thermo-electric generator

\(0\) :

Reference parameter

References

  1. Mosaffa AH, Farshi LG, Infante Ferreira CA, Rosen MA. Exergoeconomic and environmental analyses of CO2/NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Convers Manag. 2016;117:442–53. https://doi.org/10.1016/j.enconman.2016.03.053.

    Article  CAS  Google Scholar 

  2. Haq MdZ, Ayon MdSR, Nouman MdWB, Bihani R. Thermodynamic analysis and optimisation of a novel transcritical CO2 cycle. Energy Convers Manag. 2022;273: 116407. https://doi.org/10.1016/j.enconman.2022.116407.

    Article  CAS  Google Scholar 

  3. Yu B, Yang J, Wang D, Shi J, Chen J. An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle. Energy. 2019;189: 116147. https://doi.org/10.1016/j.energy.2019.116147.

    Article  CAS  Google Scholar 

  4. Dai B, Liu S, Zhu K, Sun Z, Ma Y. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander. Energy. 2017;122:787–800. https://doi.org/10.1016/j.energy.2017.01.029.

    Article  CAS  Google Scholar 

  5. Qyyum MA, Naquash A, Sial NR, Lee M. CO2 precooled dual phase expander refrigeration cycles for offshore and small-scale LNG production: energy, exergy, and economic evaluation. Energy. 2023;262: 125378. https://doi.org/10.1016/j.energy.2022.125378.

    Article  CAS  Google Scholar 

  6. Mansour A, Oberti R, Nesreddine H, Poncet S. Thermodynamic analysis of a transcritical CO2 heat pump integrating a vortex tube. Appl Therm Eng. 2023;224: 120076. https://doi.org/10.1016/j.applthermaleng.2023.120076.

    Article  CAS  Google Scholar 

  7. Huang C, Li Z, Ye Z, Wang R. Thermodynamic study of carbon dioxide transcritical refrigeration cycle with dedicated subcooling and cascade recooling. Int J Refrig. 2022;137:80–90. https://doi.org/10.1016/j.ijrefrig.2022.02.004.

    Article  CAS  Google Scholar 

  8. Dai B, Liu S, Sun Z, Ma Y. Thermodynamic performance analysis of CO2 transcritical refrigeration cycle assisted with mechanical subcooling. Energy Procedia. 2017;105:2033–8. https://doi.org/10.1016/j.egypro.2017.03.579.

    Article  CAS  Google Scholar 

  9. Chen X, Yang Q, Chi W, Zhao Y, Liu G, Li L. Energy and exergy analysis of NH3/CO2 cascade refrigeration system with subcooling in the low-temperature cycle based on an auxiliary loop of NH3 refrigerants. Energy Rep. 2022;8:1757–67. https://doi.org/10.1016/j.egyr.2022.01.004.

    Article  Google Scholar 

  10. Aghazadeh Dokandari D, Setayesh Hagh A, Mahmoudi SMS. Thermodynamic investigation and optimization of novel ejector-expansion CO2/NH3 cascade refrigeration cycles (novel CO2/NH3 cycle). Int J Refrig. 2014;46:26–36. https://doi.org/10.1016/j.ijrefrig.2014.07.012.

    Article  CAS  Google Scholar 

  11. Braimakis K. Solar ejector cooling systems: a review. Renew Energy. 2021;164:566–602. https://doi.org/10.1016/j.renene.2020.09.079.

    Article  Google Scholar 

  12. Liu J, Liu Y, Yu J. Performance analysis of a modified dual-ejector and dual-evaporator transcritical CO2 refrigeration cycle for supermarket application. Int J Refrig. 2021;131:109–18. https://doi.org/10.1016/j.ijrefrig.2021.06.010.

    Article  CAS  Google Scholar 

  13. Eskandari Manjili F, Cheraghi M. Performance of a new two-stage transcritical CO2 refrigeration cycle with two ejectors. Appl Therm Eng. 2019;156:402–9. https://doi.org/10.1016/j.applthermaleng.2019.03.083.

    Article  CAS  Google Scholar 

  14. Lee JS, Kim MS, Kim MS. Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int J Refrig. 2011;34(7):1614–25. https://doi.org/10.1016/j.ijrefrig.2010.07.025.

    Article  CAS  Google Scholar 

  15. Liu J, Zhou L, Lyu N, Lin Z, Zhang S, Zhang X. Analysis of a modified transcritical CO2 two-stage ejector-compression cycle for domestic hot water production. Energy Convers Manag. 2022;269: 116094. https://doi.org/10.1016/j.enconman.2022.116094.

    Article  CAS  Google Scholar 

  16. Wang Y, Yin Y, Cao F. Comprehensive evaluation of the transcritical CO2 ejector-expansion heat pump water heater. Int J Refrig. 2023;145:276–89. https://doi.org/10.1016/j.ijrefrig.2022.09.008.

    Article  CAS  Google Scholar 

  17. Casi Á, Aranguren P, Araiz M, Sanchez D, Cabello R, Astrain D. Performance assessment of an experimental CO2 transcritical refrigeration plant working with a thermoelectric subcooler in combination with an internal heat exchanger. Energy Convers Manag. 2022;268: 115963. https://doi.org/10.1016/j.enconman.2022.115963.

    Article  CAS  Google Scholar 

  18. Santini F, Bianchi G, Battista DD, Villante C, Orlandi M. Experimental investigations on a transcritical CO2 refrigeration plant and theoretical comparison with an ejector-based one. Energy Procedia. 2019;161:309–16. https://doi.org/10.1016/j.egypro.2019.02.097.

    Article  CAS  Google Scholar 

  19. Aranguren P, Sánchez D, Casi A, Cabello R, Astrain D. Experimental assessment of a thermoelectric subcooler included in a transcritical CO2 refrigeration plant. Appl Therm Eng. 2021;190: 116826. https://doi.org/10.1016/j.applthermaleng.2021.116826.

    Article  CAS  Google Scholar 

  20. Yang D, Jie Z, Zhang Q, Li Y, Xie J. Evaluation of the ejector two-stage compression refrigeration cycle with work performance from energy, conventional exergy and advanced exergy perspectives. Energy Rep. 2022;8:12944–57. https://doi.org/10.1016/j.egyr.2022.09.108.

    Article  Google Scholar 

  21. Liu X, Fu R, Wang Z, Lin L, Sun Z, Li X. Thermodynamic analysis of transcritical CO2 refrigeration cycle integrated with thermoelectric subcooler and ejector. Energy Convers Manag. 2019;188:354–65. https://doi.org/10.1016/j.enconman.2019.02.088.

    Article  CAS  Google Scholar 

  22. Chen G, Volovyk O, Zhu D, Ierin V, Shestopalov K. Theoretical analysis and optimization of a hybrid CO2 transcritical mechanical compression–ejector cooling cycle. Int J Refrig. 2017;74:86–94. https://doi.org/10.1016/j.ijrefrig.2016.10.002.

    Article  CAS  Google Scholar 

  23. Wang X, Yu J, Zhou M, Lv X. Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers. Energy. 2014;70:635–42. https://doi.org/10.1016/j.energy.2014.04.076.

    Article  CAS  Google Scholar 

  24. Liu Q, He Z, Liu Y, He Y. Thermodynamic and parametric analyses of a thermoelectric generator in a liquid air energy storage system. Energy Convers Manag. 2021;237: 114117. https://doi.org/10.1016/j.enconman.2021.114117.

    Article  Google Scholar 

  25. Tian Z, Chen X, Zhang Y, Gao W, Chen W, Peng H. Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle. Energy. 2023;268: 126648. https://doi.org/10.1016/j.energy.2023.126648.

    Article  CAS  Google Scholar 

  26. Zheng L, Hu Y, Mi C, Deng J. Advanced exergy analysis of a CO2 two-phase ejector. Appl Therm Eng. 2022;209: 118247. https://doi.org/10.1016/j.applthermaleng.2022.118247.

    Article  CAS  Google Scholar 

  27. Abdolalipouradl M, Mohammadkhani F, Khalilarya S, Yari M. Thermodynamic and exergoeconomic analysis of two novel tri-generation cycles for power, hydrogen and freshwater production from geothermal energy. Energy Convers Manag. 2020;226: 113544. https://doi.org/10.1016/j.enconman.2020.113544.

    Article  CAS  Google Scholar 

  28. Liu J, Liu Y, Yan G, Yu J. Theoretical study on a modified single-stage autocascade refrigeration cycle with auxiliary phase separator. Int J Refrig. 2021;122:181–91. https://doi.org/10.1016/j.ijrefrig.2020.11.009.

    Article  CAS  Google Scholar 

  29. Al-Rashed AAAA, Afrand M. Multi-criteria exergoeconomic optimization for a combined gas turbine-supercritical CO2 plant with compressor intake cooling fueled by biogas from anaerobic digestion. Energy. 2021;223: 119997. https://doi.org/10.1016/j.energy.2021.119997.

    Article  CAS  Google Scholar 

  30. Baniasad Askari I, Shahsavar A. The exergo-economic analysis of two novel combined ejector heat pump/humidification-dehumidification desalination systems. Sustain Energy Technol Assess. 2022;53:102561. https://doi.org/10.1016/j.seta.2022.102561.

    Article  Google Scholar 

  31. Khanmohammadi S, Musharavati F, Kizilkan O, Duc Nguyen D. Proposal of a new parabolic solar collector assisted power-refrigeration system integrated with thermoelectric generator using 3E analyses: energy, exergy, and exergo-economic. Energy Convers Manag. 2020;220:113055. https://doi.org/10.1016/j.enconman.2020.113055.

    Article  Google Scholar 

  32. “Gasoline and diesel prices by country,” GlobalPetrolPrices.com. Accessed: Aug. 06, 2023. [Online]. Available: https://www.globalpetrolprices.com/

  33. Jahromi FS, Beheshti M, Rajabi RF. Comparison between differential evolution algorithms and response surface methodology in ethylene plant optimization based on an extended combined energy - exergy analysis. Energy. 2018;164:1114–34. https://doi.org/10.1016/j.energy.2018.09.059.

    Article  CAS  Google Scholar 

  34. Qudah A, Almerbati A, Mokheimer EMA. Novel approach for optimizing wind-PV hybrid system for RO desalination using differential evolution algorithm. Energy Convers Manag. 2024;300: 117949. https://doi.org/10.1016/j.enconman.2023.117949.

    Article  Google Scholar 

  35. Karmakar R, Chatterjee S, Datta D, Chakraborty D. Application of harmony search algorithm in optimizing autoregressive integrated moving average: a study on a data set of Coronavirus Disease 2019. Syst Soft Comput. 2024;6: 200067. https://doi.org/10.1016/j.sasc.2023.200067.

    Article  Google Scholar 

  36. Lee GH, Sadollah A, Park SH, Geem ZW. HS-Solver: Spreadsheet based harmony search algorithm solver for various optimization problems. SoftwareX. 2022;20: 101262. https://doi.org/10.1016/j.softx.2022.101262.

    Article  Google Scholar 

  37. Cheng H, et al. Economic, environmental, exergy (3E) analysis and multi-objective genetic algorithm optimization of efficient and energy-saving separation of diethoxymethane/toluene/ethanol by extractive distillation with mixed extractants. Energy. 2023;284: 129262. https://doi.org/10.1016/j.energy.2023.129262.

    Article  CAS  Google Scholar 

  38. Kaseb Z, Rahbar M. Towards CFD-based optimization of urban wind conditions: comparison of genetic algorithm, particle swarm optimization, and a hybrid algorithm. Sustain Cities Soc. 2022;77: 103565. https://doi.org/10.1016/j.scs.2021.103565.

    Article  Google Scholar 

  39. Vuolio T, Visuri V-V, Sorsa A, Ollila S, Fabritius T. Application of a genetic algorithm based model selection algorithm for identification of carbide-based hot metal desulfurization. Appl Soft Comput. 2020;92: 106330. https://doi.org/10.1016/j.asoc.2020.106330.

    Article  Google Scholar 

  40. Zhang L, et al. Integrated optimization for utilizing iron and steel industry’s waste heat with urban heating based on exergy analysis. Energy Convers Manag. 2023;295: 117593. https://doi.org/10.1016/j.enconman.2023.117593.

    Article  Google Scholar 

  41. Erodotou P, Voutsas E, Sarimveis H. A genetic algorithm approach for parameter estimation in vapour-liquid thermodynamic modelling problems. Comput Chem Eng. 2020;134: 106684. https://doi.org/10.1016/j.compchemeng.2019.106684.

    Article  CAS  Google Scholar 

  42. Deb K, Goel T. Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. In: Zitzler E, Thiele L, Deb K, Coello Coello CA, Corne D, editors. In: Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2001.

    Google Scholar 

  43. Pan M, et al. Thermodynamic, exergoeconomic and multi-objective optimization analysis of new ORC and heat pump system for waste heat recovery in waste-to-energy combined heat and power plant. Energy Convers Manag. 2020;222: 113200. https://doi.org/10.1016/j.enconman.2020.113200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support of Kermanshah University of Technology for this research under grant number S/T/P/1430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoaib Khanmohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi, S., Sharifinasab, M.R. 3E analysis and multi-objective optimization of a trans-critical ejector-assisted Co2 refrigeration cycle combined with thermo-electric generator. J Therm Anal Calorim 149, 3951–3964 (2024). https://doi.org/10.1007/s10973-024-12968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12968-1

Keywords

Navigation