Skip to main content
Log in

Experimental investigation for heat transfer performance of CuO-water nanofluid in a double pipe heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In recent scenario world is facing the problem of energy consumption. Researchers are keen on developing less energy consuming devices; in this regard, heat transfer using nanofluid has got the attention of current researchers for application in heat exchangers. In present study, an experiment was performed on double pipe heat exchanger using CuO-water nanofluids and sodium lauryl sulphate as the surfactant to examine the thermal performance factor (TPF) and pressure drop. The studies were conducted for a single phase fully developed flow with volume fractions of 0.005%, 0.02%, 0.04%, and 0.07% in the turbulent range between Reynolds numbers 5500 and 15,000. Along with thermal conductivity, Brownian motion and thickness of interfacial layer are also responsible for heat transfer enhancement in heat exchangers. For a volume fraction of 0.07% at Reynolds number 5500, the maximum enhancement in Nusselt number was observed 67.9% with the penalty of 189.47% increase in friction factor. The highest TPF recorded during the experiment is 1.18 for a volume fraction of 0.07% at 5500 Reynolds number. In present study a novel correlation was also developed for Nusselt number and friction factor. For better understanding the characterization of CuO nanoparticle, XRD, FeSEM, and EDS testing were conducted in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

A:

Surface area (mm2)

C:

Specific heat (kJ kg1K1)

d:

Pipe diameter (mm)

\({\text{f}}\) :

Friction factor

h:

Convectional heat transfer coefficient (W m 2K1)

k:

Thermal conductivity (W mK1)

L:

Length of the test section (mm)

\(\dot{m}\) :

Flow rate (kg s1)

Nu:

Nusselt number

P:

Pressure (Pa)

Pr:

Prandtl number

Q:

Rate of heat transfer (kJ s1)

Re:

Reynolds number

T:

Temperature (K)

U:

Overall heat transfer coefficient (W m2K1)

u:

Flow velocity (m s1)

W:

Mass (N)

ϕ:

Volume fraction

ρ:

Mass density (kg m3)

µ:

Dynamic viscosity (N-s m2)

Ɵ:

Angle (°)

β:

Width of diffraction band (radian)

λ:

Wavelength (nm)

ɳ:

Thermal performance factor

ave:

Average

b:

Bulk

bƒ:

Base fluid

c:

Cold fluid

i:

Inlet

h:

Hot fluid

nf:

Nanofluid

np:

Nanoparticle

o:

Outlet

w:

Wall

LMTD:

Logarithmic mean temperature difference

Al2O3 :

Aluminium oxide

CuO:

Copper oxide

DPHE:

Double pipe heat exchanger

LPH:

Litre per hour

POP:

Plaster of Paris

PVC:

Polyvinyl chloride

SiO2 :

Silicon oxide

TPF:

Thermal performance factor

VF:

Volume fraction

ZnO:

Zinc oxide

NPs:

Nanoparticles

NFs:

Nanofluids

PT:

Plain tube

TT:

Twisted tape

HEs:

Heat exchangers

HTR:

Heat transfer rate

References

  1. B. K. Dandoutiya, Experimental analysis of thermal performance factor for double pipe heat exchanger with ZnO – water nano fl uid, 2023, doi: https://doi.org/10.1177/09544089231175090.

  2. Dandoutiya BK, Kumar A. “Study of thermal performance of double pipe heat exchanger using W-cut twisted tape”, Energy Sources. Part A Recover Util Environ Eff. 2023;45(2):5221–38. https://doi.org/10.1080/15567036.2023.2207497.

    Article  CAS  Google Scholar 

  3. Wijayanta AT, Yaningsih I, Aziz M, Miyazaki T, Koyama S. Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger. Appl Therm Eng. 2018;145:27–37. https://doi.org/10.1016/j.applthermaleng.2018.09.009.

    Article  Google Scholar 

  4. Chaurasia SR, Sarviya RM. Comparative thermal performance analysis on helical screw insert in tube with number of strips with nanofluid at laminar flow regime. J Therm Sci Eng Appl. 2021. https://doi.org/10.1115/1.4047214.

    Article  Google Scholar 

  5. Singh SK, Kumar A. “Experimental study of heat transfer and friction factor in a double pipe heat exchanger using twisted tape with dimple inserts”, Energy Sources. Part A Recover Util Environ Eff. 2021;00(00):1–30. https://doi.org/10.1080/15567036.2021.1927248.

    Article  CAS  Google Scholar 

  6. Patel BV, Sarviya RM, Rajput SPS. “Experimental study of thermal characteristics of alternatively twisted swirl generator tape in a heat exchanger tube. Energy Sour Part A Recover Util Environ Eff. 2022;44(4):9603–19. https://doi.org/10.1080/15567036.2022.2134520.

    Article  CAS  Google Scholar 

  7. Kumar A, Bhagoria JL, Sarviya RM. Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs. Energy Convers Manag. 2009;50(8):2106–17. https://doi.org/10.1016/j.enconman.2009.01.025.

    Article  CAS  Google Scholar 

  8. Man C, Lv X, Hu J, Sun P, Tang Y. Experimental study on effect of heat transfer enhancement for single-phase forced convective flow with twisted tape inserts. Int J Heat Mass Transf. 2017;106:877–83. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.026.

    Article  CAS  Google Scholar 

  9. Darzi AAR, Farhadi M, Sedighi K, Shafaghat R, Zabihi K. Experimental investigation of turbulent heat transfer and flow characteristics of SiO 2/water nanofluid within helically corrugated tubes. Int Commun Heat Mass Transf. 2012;39(9):1425–34. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.027.

    Article  CAS  Google Scholar 

  10. Maddah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002.

    Article  CAS  Google Scholar 

  11. Jalili B, Aghaee N, Jalili P, Domiri Ganji D. Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid. Case Stud Therm Eng. 2022;35:102086. https://doi.org/10.1016/j.csite.2022.102086.

    Article  Google Scholar 

  12. Nakhchi ME, Esfahani JA. Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chem Eng Process - Process Intensif. 2019;141:107533. https://doi.org/10.1016/j.cep.2019.107533.

    Article  CAS  Google Scholar 

  13. Diwaker MK, Kumar A. Thermohydraulic performance of DPHE affected by triangular and semi-circular cut size on insert: IoT-based experimentation. Case Stud Therm Eng. 2023;43(2022):102796. https://doi.org/10.1016/j.csite.2023.102796.

    Article  Google Scholar 

  14. Altun AH, Nacak H, Canli E. Effects of trapezoidal and twisted trapezoidal tapes on turbulent heat transfer in tubes. Appl Therm Eng. 2022;211:118386. https://doi.org/10.1016/j.applthermaleng.2022.118386.

    Article  Google Scholar 

  15. Wang T, Zhang Q, Song K, Zhang K, Su M, Wu X. Thermodynamic characteristics of a novel combination of three-start twisted tube and oval dimples. Case Stud Therm Eng. 2022;37:102284. https://doi.org/10.1016/j.csite.2022.102284.

    Article  Google Scholar 

  16. Nakhchi ME, Esfahani JA, Kim KC. Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts. Int J Heat Mass Transf. 2020;148:119143. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119143.

    Article  Google Scholar 

  17. Murugesan P, Mayilsamy K, Suresh S, Srinivasan PSS. Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. Int Commun Heat Mass Transf. 2011;38(3):329–34. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.010.

    Article  Google Scholar 

  18. Prasad PVD, Gupta AVSSKS, Deepak K. Investigation of Trapezoidal-Cut Twisted Tape Insert in a Double Pipe U-Tube Heat Exchanger using Al2O3/Water Nanofluid. Procedia Mater Sci. 2015;10(2014):50–63. https://doi.org/10.1016/j.mspro.2015.06.025.

    Article  CAS  Google Scholar 

  19. Dandoutiya BK, Kumar A. W-cut twisted tape’s effect on the thermal performance of a double pipe heat exchanger: A numerical study. Case Stud Therm Eng. 2022;34:102031. https://doi.org/10.1016/j.csite.2022.102031.

    Article  Google Scholar 

  20. Patel BV, Sarviya RM, Rajput SPS. “Numerical investigations for the performance improvement of a tubular heat exchanger with anti-clockwise clockwise twisted tape inserts”, Energy Sources. Part A Recover Util Environ Eff. 2022;44(2):4381–97. https://doi.org/10.1080/15567036.2022.2075993.

    Article  CAS  Google Scholar 

  21. Patel BV, Sarviya RM, Rajput SPS. “Improving hydrothermal performance of a tubular heat exchanger with different types of twisted tapes using graphene nanoplatelets/water nanofluid”, Energy Sources. Part A Recover Util Environ Eff. 2023;45(4):12695–710.

    CAS  Google Scholar 

  22. Kumar P, Sarviya RM. “Numerical investigation of heat transfer augmentation and frictional loss characteristics in heat exchanger tube with the use of novel perforated rectangular cut twisted tape”, Energy Sources. Part A Recover Util Environ Eff. 2023;45(1):2346–61.

    Google Scholar 

  23. S. K. Singh, V. Kumar, A. Kumar, and S. Yadav, “Experimental study of the thermal characteristic of a double tube heat exchanger with tapered wire coil inserts using PCM-dispersed mono/hybrid nanofluids,” Exp. Heat Transf., pp. 1–17, 2023.

  24. Tatar DK, Jha JM. Wet chemical synthesis and characterization of CuO nanoparticles and their application in pool boiling heat transfer. J Cryst Growth. 2023;617:127305. https://doi.org/10.1016/j.jcrysgro.2023.127305.

    Article  CAS  Google Scholar 

  25. B. D. Cullity, “PRELIMINARY AND CONTENT.pdf.” 2014. [Online]. Available: http://lib.hpu.edu.vn/handle/123456789/29008

  26. Elango M, Deepa M, Subramanian R, Mohamed Musthafa A. Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym Plast Technol Eng. 2018;57(14):1440–51.

    Article  CAS  Google Scholar 

  27. Ingle AP, Rai M. Copper nanoflowers as effective antifungal agents for plant pathogenic fungi. IET Nanobiotechnol. 2017;11(5):546–51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Madhukara Naik M, Bhojya Naik HS, Nagaraju G, Vinuth M, Vinu K, Viswanath R. Green synthesis of zinc doped cobalt ferrite nanoparticles: Structural, optical, photocatalytic and antibacterial studies. Nano-Struct Nano-Objects. 2019;19:100322. https://doi.org/10.1016/j.nanoso.2019.100322.

    Article  CAS  Google Scholar 

  29. Nithiyavathi R, et al. Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens. J Infect Public Health. 2021;14(12):1893–902. https://doi.org/10.1016/j.jiph.2021.10.022.

    Article  CAS  PubMed  Google Scholar 

  30. Malika M, Bhad R, Sonawane SS. ANSYS simulation study of a low volume fraction CuO–ZnO/water hybrid nanofluid in a shell and tube heat exchanger. J Indian Chem Soc. 2021;98(11): 100200. https://doi.org/10.1016/j.jics.2021.100200.

    Article  CAS  Google Scholar 

  31. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomed Pharmacother. 2016;84:1213–22. https://doi.org/10.1016/j.biopha.2016.10.038.

    Article  CAS  PubMed  Google Scholar 

  32. Angeline Mary AP, Thaminum Ansari A, Subramanian R. Sugarcane juice mediated synthesis of copper oxide nanoparticles, characterization and their antibacterial activity. J King Saud Univ - Sci. 2019;31(4):1103–14. https://doi.org/10.1016/j.jksus.2019.03.003.

    Article  Google Scholar 

  33. H. C. Murthy, T. Desalegn, M. Kassa, B. Abebe, and T. Assefa, “Synthesis of green copper nanoparticles using medicinal plant hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties,” J. Nanomater., vol. 2020, 2020.

  34. Prabu HJ, et al. Laser induced plant leaf extract mediated synthesis of CuO nanoparticles and its photocatalytic activity. Environ Res. 2022;212:113295.

    Article  Google Scholar 

  35. Andualem WW, Sabir FK, Mohammed ET, Belay HH, Gonfa BA. Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity. J Nanotechnol. 2020;2020:1–10.

    Article  Google Scholar 

  36. Hwang Y, et al. Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta. 2007;455(1–2):70–4.

    Article  CAS  Google Scholar 

  37. Fedele L, Colla L, Bobbo S, Barison S, Agresti F. Experimental stability analysis of different water-based nanofluids. Nanoscale Res Lett. 2011;6:1–8.

    Article  Google Scholar 

  38. Tatar DK, Jha JM. Biosynthesis and characterization of CuO nanoparticles using mehandi and neem leaf extract and its relevance as a nanofluid for heat transfer. J Cryst Growth. 2023;605:127063.

    Article  Google Scholar 

  39. Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew Sustain Energy Rev. 2018;81:536–51.

    Article  CAS  Google Scholar 

  40. R. Heydari and M. Rashidipour, “Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): synthesis and in vitro cytotoxic effect on MCF-7 cells,” Int. J. Breast Cancer, vol. 2015, 2015.

  41. Dey D, Kumar P, Samantaray S. A review of nanofluid preparation, stability, and thermo-physical properties. Heat Transf Res. 2017;46(8):1413–42.

    Article  Google Scholar 

  42. Abdul Hamid K, Azmi WH, Mamat R, Sharma KV. Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Appl Therm Eng. 2019;152:275–86. https://doi.org/10.1016/j.applthermaleng.2019.02.083.

    Article  CAS  Google Scholar 

  43. Abdul Hamid K, Azmi WH, Mamat R, Sharma KV. Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Appl Therm Eng. 2019;152(2018):275–86. https://doi.org/10.1016/j.applthermaleng.2019.02.083.

    Article  CAS  Google Scholar 

  44. Sarviya RM, Fuskele V. Heat Transfer and Pressure Drop in a Circular Tube Fitted with Twisted Tape Insert Having Continuous Cut Edges. J Energy Storage. 2018;19(July):10–4. https://doi.org/10.1016/j.est.2018.07.001.

    Article  Google Scholar 

  45. Kathait PS, Patil AK. Thermo-hydraulic performance of a heat exchanger tube with discrete corrugations. Appl Therm Eng. 2014;66(1–2):162–70. https://doi.org/10.1016/j.applthermaleng.2014.01.069.

    Article  Google Scholar 

  46. Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.

    Article  CAS  Google Scholar 

  47. Kotia A, Borkakoti S, Deval P, Ghosh SK. Review of interfacial layer’s effect on thermal conductivity in nanofluid. Heat Mass Transf und Stoffuebertragung. 2017;53(6):2199–209. https://doi.org/10.1007/s00231-016-1963-6.

    Article  Google Scholar 

  48. Szabó T, Szeri A, Dékány I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon N Y. 2005;43(1):87–94. https://doi.org/10.1016/j.carbon.2004.08.025.

    Article  CAS  Google Scholar 

  49. Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. Hoboken: Wiley; 2007.

    Book  Google Scholar 

  50. Sarkar C, et al. Integration of interfacial and alloy effects to modulate catalytic performance of MOF derived Cu–Pd nanocrystals toward hydrogenolysis of 5-hydroxymethylfurfural. ACS Sustain Chem Eng. 2019;7:10349–62.

    Article  CAS  Google Scholar 

  51. Hemmat Esfe M, Goodarzi M, Reiszadeh M, Afrand M. Evaluation of MWCNTs-ZnO/5W50 nanolubricant by design of an artificial neural network for predicting viscosity and its optimization. J Mol Liq. 2019;277:921–31. https://doi.org/10.1016/j.molliq.2018.08.047.

    Article  CAS  Google Scholar 

  52. Lee G-J, Kim CK, Lee MK, Rhee CK, Kim S, Kim C. Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method. Thermochim Acta. 2012;542:24–7.

    Article  CAS  Google Scholar 

  53. Radkar RN, Bhanvase BA, Barai DP, Sonawane SH. Intensified convective heat transfer using ZnO nanofluids in heat exchanger with helical coiled geometry at constant wall temperature. Mater Sci Energy Technol. 2019;2(2):161–70. https://doi.org/10.1016/j.mset.2019.01.007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BKA is Ph.D. research in the Department of Mechanical Engineering at Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh India, 462,003. He is currently working on the application of nanofluids in the field of heat transfer like heat exchangers. AK has more than 15 years of experience of providing knowledge resource to students and expertise in participatory and innovative learning methodologies. He has done his Ph.D. from Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India, 462,003 and presently working as an Assistant Professor at Maulana Azad National Institute of Technology, Bhopal. His area of research is heat transfer-related application. He has published more than 30 research paper in the various reputed and peer reviewed International/National Journals and Conferences. He has attended and acted as resource person in various Faculty Development Program and Short-Term Training Program. Author is also a member of professional societies like ISHMT and ASME.

Corresponding author

Correspondence to Brajesh Kumar Ahirwar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahirwar, B.K., Kumar, A. Experimental investigation for heat transfer performance of CuO-water nanofluid in a double pipe heat exchanger. J Therm Anal Calorim 149, 4133–4151 (2024). https://doi.org/10.1007/s10973-024-12947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12947-6

Keywords

Navigation