Skip to main content
Log in

Magnetohydrodynamic quadratic convective and radiative heat transfer analysis of magnetite ferrofluid CoFe2O4–H2O in a corner-heated porous square cavity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ferrofluids are colloidal suspensions made of nanoscale ferromagnetic particles suspended in a base fluid. It has various medical applications like cell separation, drug targeting, magnetic resonance imaging, etc. Due to the wide range of uses for ferrofluids, this investigation looked into the way that how the fluid flows and transfers heat in the presence of thermal radiation, a porous medium, transverse magnetic field, and heat sink or source impacts. The current study examines a unique corner-heated enclosure problem with a quadratic Boussinesq approximation fluid flow and heat transfer under natural convection circumstances. The square cavity of length (L) is considered with hot and cold slits at the opposite–opposite corners, and it is filled with cobalt ferrite CoFe2O4–water H2O ferrofluid. Middle portion of the all the walls is adiabatic. The implications of magnetohydrodynamic are examined employing CoFe2O4 nanoparticles. The Marker-And-Cell method with finite difference technique is employed for the solution of the dimensionless constitutive equations. In this regard, physics of the problem is well explored for the various parameters such as Rayleigh number (Ra), Darcy number (Da), Hartmann numbers (Ha), solid volume fractions \((\varphi )\), thermal radiation parameter (Rd), nonlinear Boussinesq approximation parameter \((\delta ),\) and inclination angle of the cavity \((\omega )\) and are graphically represented. Suspending the CoFe2O4 ferroparticles in the base liquid water increases heat transmission by \(14.5\%\). A heat source or sink enhances the fluid velocity and boosts heat transmission by \(91.93\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. Job VM, Gunakala SR, Gorla RSR, Makinde O, Basha HT. Unsteady convective ferrohydrodynamic flow of MnZnFe2O4/FeCrNbB-EG hybrid nanofluid in a horizontal channel with porous fins and semi-circular heaters. J Magn Magn Mater. 2023;571: 170584. https://doi.org/10.1016/j.jmmm.2023.170584.

    Article  CAS  Google Scholar 

  2. Cao Y, Mansir IB, Singh PK, Ali HE, Abed AM, El-Refaey AM, Aly AA, Nguyen DT, Wae-hayee M, Tran DC. Heat transfer analysis on ferrofluid natural convection system with magnetic field. Ain Shams Eng J. 2023. https://doi.org/10.1016/j.asej.2023.102122.

    Article  Google Scholar 

  3. Song ZJ, Khan ZH, Ahmad R, Khan WA, Wei Y. Thermal analysis of ferromagnetic nanofluid flow in a channel over a dimpled cavity. J Magn Magn Mater. 2023. https://doi.org/10.1016/j.jmmm.2023.170653.

    Article  Google Scholar 

  4. Korei Z, Berrahil F, Filali A, Benissaad S, Boulmerka A. Thermo-magnetic convection analysis of magnetite ferrofluid in an arc-shaped lid-driven electronic chamber with partial heating. J Thermal Anal Calorim. 2023. https://doi.org/10.1007/s10973-022-11894-4.

    Article  Google Scholar 

  5. Hussain S, Mahmood R, Ahmed SE. Mixed convection of ferrofluids in a square enclosure with obstacles: effect of iso-perimetric shapes. Numer Methods Partial Differ Equ. 2023;39(3):2378–99. https://doi.org/10.1002/num.22971.

    Article  Google Scholar 

  6. Khan Z, Makinde O, Hamid M, Haq RU, Khan W. Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium. J Magn Magn Mater. 2020;499: 166241. https://doi.org/10.1016/j.jmmm.2019.166241.

    Article  CAS  Google Scholar 

  7. Ushachew EG, Sharma MK, Makinde O. Heat convection in micropolar nanofluid through porous medium-filled rectangular open enclosure: effect of an embedded heated object with different geometries. J Therm Anal Calorim. 2021;146(4):1865–81. https://doi.org/10.1007/s10973-020-10118-x.

    Article  CAS  Google Scholar 

  8. Reddy ES, Panda S, Nayak MK, Makinde OD. Cross flow on transient double-diffusive natural convection in inclined porous trapezoidal enclosures. Heat Transfer. 2021. https://doi.org/10.1002/htj.21908.

    Article  Google Scholar 

  9. Balla CS, Alluguvelli R, Naikoti K, Makinde OD. Effect of chemical reaction on bioconvective flow in oxytactic microorganisms suspended porous cavity. J Appl Comput Mech. 2020;6(3):653–64. https://doi.org/10.22055/JACM.2019.14811.

    Article  Google Scholar 

  10. Alluguvelli R, Balla CS, Naikoti K, Makinde OD. Nanofluid bioconvection in porous enclosure with viscous dissipation. Indian J Pure Appl Phys (IJPAP). 2022;60(1):78–89. https://doi.org/10.56042/ijpap.v60i1.33062.

    Article  Google Scholar 

  11. Sankar M, Kiran S, Ramesh G, Makinde OD. Natural convection in a non-uniformly heated vertical annular cavity. Defect and Diffusion Forum. 2017;377:189–99. https://doi.org/10.4028/www.scientific.net/DDF.37.189. (Trans Tech Publ.).

    Article  Google Scholar 

  12. Abdulkadhim A, Abed IM, Said NM. Magnetohydrodynamics thermogravitational convective in a novel I-shaped wavy-walled enclosure considering various inner hot pipe locations. J Thermal Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-11072-y.

    Article  Google Scholar 

  13. Mondal MK, Biswas N, Datta A, Mandal DK, Manna NK. Magneto-hydrothermal convective dynamics of hybrid nanofluid-packed partially cooled porous cavity: effect of half-sinusoidal heating. J Thermal Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-11959-y.

    Article  Google Scholar 

  14. Jiang X, Hatami M, Abderrahmane A, Younis O, Makhdoum BM, Guedri K. Mixed convection heat transfer and entropy generation of MHD hybrid nanofluid in a cubic porous cavity with wavy wall and rotating cylinders. Appl Therm Eng. 2023;226: 120302. https://doi.org/10.1016/j.applthermaleng.2023.120302.

    Article  CAS  Google Scholar 

  15. Reddy NK, Sankar M. Buoyant heat transfer of nanofluids in a vertical porous annulus: a comparative study of different models. Int J Numer Methods Heat & Fluid Flow. 2023;33(2):477–509. https://doi.org/10.1108/HFF-03-2022-0179.

    Article  Google Scholar 

  16. Venkatadri K, Öztop HF, Prasad VR, Parthiban S, Bég AO. RSM-based sensitivity analysis of hybrid nanofluid in an enclosure filled with non-darcy porous medium by using LBM method. Numer Heat Transfer, Part A: Appl. 2023. https://doi.org/10.1080/10407782.2023.2193708.

    Article  Google Scholar 

  17. Iftikhar B, Siddiqui MA, Javed T. Computational analysis of heat transfer via heatlines for MHD natural convection ferrofluid flow inside the u-shaped cavity. Eur Phys J Plus. 2023;138(2):1–14. https://doi.org/10.1140/epjp/s13360-023-03769-w.

    Article  CAS  Google Scholar 

  18. Nemati M, Farahani SD. Using lattice boltzmann method to control entropy generation during conjugate heat transfer of power-law liquids with magnetic field and heat absorption/production. Comput Particle Mech. 2022. https://doi.org/10.1007/s40571-022-00497-3.

    Article  Google Scholar 

  19. Roy NC. Conjugate effects of shear-driven and buoyancy-induced flow of a reacting chemical in a lid-driven enclosure. J Therm Anal Calorim. 2022;147(17):9661–76. https://doi.org/10.1007/s10973-021-11193-4.

    Article  CAS  Google Scholar 

  20. Asha NEJ, Nag P, Akhter MN, Molla MM. MRT-lattice boltzmann simulation of magnetic field effects on heat transfer from a heater in a C-shaped cavity filled with non-newtonian hybrid nanofluids. Int J Thermofluids. 2023. https://doi.org/10.1016/j.ijft.2023.100345.

    Article  Google Scholar 

  21. Nabwey HA, Rashad A, Reddy PBA, Jakeer S, Mansour M, Salah T. Radiative effects on unsteady MHD natural convection flow in an inclined wavy porous cavity using hybrid nanofluid containing a square obstacle. Alex Eng J. 2023;65:921–37. https://doi.org/10.1016/j.aej.2022.10.004.

    Article  Google Scholar 

  22. Hosseinzadeh K, Akbari S, Faghiri S, Shafii MB. Optimization approach for MoS2-water ethylene glycol mixture nanofluid flow in a wavy enclosure. Int J Thermofluids. 2023;18: 100337. https://doi.org/10.1016/j.ijft.2023.100337.

    Article  CAS  Google Scholar 

  23. Iftikhar B, Javed T, Siddiqui MA. Natural convective flow of non-isothermal hybrid nanofluid inside the cavity with the influence of a heated fin and non-linear thermal radiation: Second law analysis. Mater Today Commun. 2023. https://doi.org/10.1016/j.mtcomm.2023.105341.

    Article  Google Scholar 

  24. Atashafrooz M, Sajjadi H, Delouei AA. Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. J Magn Magn Mater. 2023. https://doi.org/10.1016/j.jmmm.2023.170354.

    Article  Google Scholar 

  25. Vijayalakshmi P, Sivaraj R. Heat transfer analysis on micropolar alumina-silica-water nanofluid flow in an inclined square cavity with inclined magnetic field and radiation effect. J Therm Anal Calorim. 2023;148(2):473–88. https://doi.org/10.1007/s10973-022-11758-x.

    Article  CAS  Google Scholar 

  26. Nemati M, Farahani SD, Sani HM. Assessment of effectiveness amount of heat absorption/production and magnetic field on entropy generation during conjugate heat transfer of hybrid nanofluid. J Inst Eng (India): Series C. 2023. https://doi.org/10.1007/s40032-023-00921-4.

    Article  Google Scholar 

  27. Siddiqui MA, Mehmood Z, Riaz A, Lu D. Numerical study of energy transmission through copper-based nanofluid contained in a partially heated isosceles triangular cavity in the presence of heat source/sink. Phys Scr. 2021;96(5): 055222. https://doi.org/10.1088/1402-4896/abea11.

    Article  Google Scholar 

  28. El Moutaouakil L, Boukendil M, Hidki R, Charqui Z, Zrikem Z, Abdelbaki A. Analytical solution for natural convection of a heat-generating fluid in a vertical rectangular cavity with two pairs of heat source/sink. Therm Sci Eng Progress. 2023;40: 101738. https://doi.org/10.1016/j.tsep.2023.101738.

    Article  Google Scholar 

  29. Keerthi Reddy N, Sivaraj R, Sankar M, Kumara Swamy H. Unsteady buoyant convection of nanofluid in a porous annulus: impacts of size and location of thermal source-sink pairs. Int J Ambient Energy. 2023. https://doi.org/10.1080/01430750.2023.2181865.

    Article  Google Scholar 

  30. Dinarvand S, Berrehal H, Tamim H, Sowmya G, Noeiaghdam S, Abdollahzadeh M. Squeezing flow of aqueous CNTs-Fe3O4 hybrid nanofluid through mass-based approach: effect of heat source/sink, nanoparticle shape, and an oblique magnetic field. Results Eng. 2023;17: 100976. https://doi.org/10.1016/j.rineng.2023.100976.

    Article  CAS  Google Scholar 

  31. Santhosh N, Sivaraj R, Ramachandra Prasad V, Anwar Bég O, Leung H-H, Kamalov F, Kuharat S. Computational study of MHD mixed convective flow of cu/Al2O3-water nanofluid in a porous rectangular cavity with slits, viscous heating, joule dissipation and heat source/sink effects. Waves Random Complex Media. 2023. https://doi.org/10.1080/17455030.2023.2168786.

    Article  Google Scholar 

  32. Santhosh N, Sivaraj R. Comparative heat transfer performance of hydromagnetic mixed convective flow of cobalt-water and cobalt-kerosene ferro-nanofluids in a porous rectangular cavity with shape effects. Eur Phys J Plus. 2023;138(3):240. https://doi.org/10.1140/epjp/s13360-023-03837-1.

    Article  CAS  Google Scholar 

  33. Sumithra A, Sivaraj R. Chemically reactive magnetohydrodynamic mixed convective nanofluid flow inside a square porous enclosure with viscous dissipation and ohmic heating. Eur Phys J Plus. 2022;137(10):1193. https://doi.org/10.1140/epjp/s13360-022-03409-9.

    Article  CAS  Google Scholar 

  34. Sumithra A, Sivaraj R. Impact of exothermic chemical reaction on MHD unsteady mixed convective flow in a rectangular porous cavity filled with nanofluid. Waves in Random and Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2139014.

    Article  Google Scholar 

  35. Vijayalakshmi P, Sivaraj R. Numerical simulation of hybrid nanofluid (cu/al2o3-water) flow in a porous enclosure with heated corners and non-fourier heat flux. Proc Inst Mech Eng, Part E. 2023;237(5):1621–34. https://doi.org/10.1177/09544089221122063.

    Article  CAS  Google Scholar 

  36. Thirumalaisamy K, Sivaraj R, Prasad V, Beg O, Leung H, Kamalov F, Vajravelu K, et al. Comparative heat transfer analysis of \({\gamma -al_{2}o_{3}-c_{2}h_{6}o_{2}}\) and \({\gamma -al_{2}o_{3}-h_{2}o}\) electroconductive nanofluids in a saturated porous square cavity with joule dissipation and heat source/sink effects. Phys Fluids. 2022. https://doi.org/10.1063/5.0095334.

    Article  Google Scholar 

  37. Thirumalaisamy K, Ramachandran S, Ramachandra Prasad V, Anwar Bég O, Leung H-H, Kamalov F, Panneer Selvam R. Comparative heat transfer analysis of electroconductive Fe3O4-MWCNT-water and Fe3O4-MWCNT-kerosene hybrid nanofluids in a square porous cavity using the non-fourier heat flux model. Phys Fluids. 2022;34(12): 122016. https://doi.org/10.1063/5.0127463.

    Article  CAS  Google Scholar 

  38. Thirumalaisamy K, Ramachandran S. Comparative heat transfer analysis on Fe3O4-H2O and Fe3O4-cu-H2O flow inside a tilted square porous cavity with shape effects. Phys Fluids. 2023;35(2): 022007. https://doi.org/10.1063/5.0136326.

    Article  CAS  Google Scholar 

  39. Jino L, Kumar AV. Cu-water nanofluid MHD quadratic natural convection on square porous cavity. Int J Appl Comput Math. 2021;7(4):164. https://doi.org/10.1007/s40819-021-01103-5.

    Article  Google Scholar 

  40. Elshehabey HM, Raizah Z, Öztop HF, Ahmed SE. MHD natural convective flow of Fe3O4-H2O ferrofluids in an inclined partial open complex-wavy-walls ringed enclosures using non-linear boussinesq approximation. Int J Mech Sci. 2020;170: 105352. https://doi.org/10.1016/j.ijmecsci.2019.105352.

    Article  Google Scholar 

  41. Ahmed SE, Raizah Z, Chamkha A. Mixed convective transport in inclined porous open arc-shaped enclosures saturated by nanofluids using a second-order boussinesq approximation. Case Stud Thermal Eng. 2021;27: 101295. https://doi.org/10.1016/j.csite.2021.101295.

    Article  Google Scholar 

  42. Mahanthesh B, Mackolil J. Flow of nanoliquid past a vertical plate with novel quadratic thermal radiation and quadratic boussinesq approximation: sensitivity analysis. Int Commun Heat Mass Transfer. 2021;120: 105040. https://doi.org/10.1016/j.icheatmasstransfer.2020.105040.

    Article  CAS  Google Scholar 

  43. Rana P, Al-Kouz W, Mahanthesh B, Mackolil J. Heat transfer of TiO2-EG nanoliquid with active and passive control of nanoparticles subject to nonlinear boussinesq approximation. Int Commun Heat Mass Transfer. 2021;126: 105443. https://doi.org/10.1016/j.icheatmasstransfer.2021.105443.

    Article  Google Scholar 

  44. Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Meth Fluids. 1983;3(3):249–64. https://doi.org/10.1002/fld.1650030305.

    Article  Google Scholar 

  45. Wan C, Patnaik GWDBSV. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numer Heat Transfer: Part B: Fundamentals. 2001;40(3):199–228. https://doi.org/10.1080/104077901752379620.

    Article  Google Scholar 

  46. Devi TS, Lakshmi CV, Venkatadri K, Prasad VR, Bég OA, Reddy MS. Simulation of unsteady natural convection flow of a casson viscoplastic fluid in a square enclosure utilizing a MAC algorithm. Heat Transfer. 2020;49(4):1769–87. https://doi.org/10.1002/htj.21690.

    Article  Google Scholar 

  47. Waini I, Khan U, Zaib A, Ishak A, Pop I. Inspection of TiO2-CoFe2O4 nanoparticles on MHD flow toward a shrinking cylinder with radiative heat transfer. J Mol Liq. 2022;361: 119615. https://doi.org/10.1016/j.molliq.2022.119615.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally to the manuscript.

Corresponding author

Correspondence to A. Subramanyam Reddy.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, N., Reddy, A.S. Magnetohydrodynamic quadratic convective and radiative heat transfer analysis of magnetite ferrofluid CoFe2O4–H2O in a corner-heated porous square cavity. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-12942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-12942-x

Keywords

Navigation