Skip to main content
Log in

Effect of using hybrid nanofluid and vortex generator on thermal performance of plate–fin heat exchanger: numerical investigation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Performance improvement of heat exchangers is important since their size and manufacturing cost can be decreased. This study aims to evaluate two techniques, namely use of nanofluid and employment of vortex generator (VG) applicable in performance improvement of a fin–plate heat exchanger. In the present article, a numerical investigation is carried out on a fin–plate heat exchanger by considering effects of employment of hybrid nanofluid, MWCNT-Fe3O4/water with 0.3% concentration, and winglet VG with different angles. In this regard, computational fluid dynamics is applied by using SST turbulence models. Results of the simulation reveal that employment of the nanofluid and VG induces enhancement in the heat transfer. Heat transfer improvement by use of VG is mainly due to the boundary layer reduction and intensification of turbulent flow and nanofluids enhance thermal performance owing to the increase of the fluid thermal conductivity. The augmentation in the heat transfer in case of using VG was dependent on its configuration. Moreover, simultaneous usage of both of them would further augment the heat transfer. The maximum heat transfer rate improvement in case of using the nanofluid without VG, with vortex generator and without the nanofluid and with the nanofluid and vortex generator is around 5.2, 69.2 and 74.6%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghalandari M, Irandoost Shahrestani M, Maleki A, Safdari Shadloo M, El Haj AM. Applications of intelligent methods in various types of heat exchangers: a review. J Thermal Anal Calorim. 2021;145:1837–48. https://doi.org/10.1007/s10973-020-10425-3.

    Article  CAS  Google Scholar 

  2. Teke I, Aǧra Ö, Atayilmaz ŞÖ, Demir H. Determining the best type of heat exchangers for heat recovery. Appl Thermal Eng Pergamon. 2010;30:577–83.

    Article  CAS  Google Scholar 

  3. Liu W, Davidson J, Mantell S. Thermal analysis of polymer heat exchangers for solar water heating: a case study. J Solar Energy Eng. 2000;122:84–91. https://doi.org/10.1115/1.1288027.

    Article  CAS  Google Scholar 

  4. Zhang L, Wang Y, Ding B, Gu J, Ukrainczyk N, Cai J. Development of geopolymer-based composites for geothermal energy applications. J Clean Product. 2023;419:138202.

    Article  CAS  Google Scholar 

  5. Liu N, Lai XL, Yan K, Zhang H. Investigation of flow and heat transfer characteristics on different heat exchangers of air conditioner. Appl Thermal Eng Pergamon. 2016;103:428–33.

    Article  Google Scholar 

  6. Dalkilic AS. Parametric study of energy, exergy and thermoeconomic analyses on vapor compression system cascaded with Libr/Water and NH3/water absorbtion cascade refrigeration cycle. Anadolu University J Sci Technol A—Appl Sci Eng. 2017;18:78–96.

    Google Scholar 

  7. El Haj AM, Alhuyi NM. Heat exchangers and nanofluids. In: Design and Performance Optimization of Renewable Energy Systems. UK: Elsevier; 2021. p. 33–42.

    Google Scholar 

  8. Al-Askaree EH, Al-Muhsen NFO. Experimental investigation on thermal performance of solar water heater equipped with Serpentine fin core heat exchanger. Clean Eng and Technol. 2023;12:100593.

    Article  Google Scholar 

  9. Tariq H, Sajjad R, Ullah Khan MZ, Ghachem K, Ammar A, Khan SU, et al. Effective waste heat recovery from engine exhaust using fin prolonged heat exchanger with graphene oxide nanoparticles. J Indian Chem Soc. 2023;100:100911.

    Article  CAS  Google Scholar 

  10. Li K, Zeng Y. Corrosion of heat exchanger materials in co-combustion thermal power plants. Renew Sustain Energy Rev. 2022;161:112328.

    Article  CAS  Google Scholar 

  11. Rehman A, Qunyi T, Karim A, Noreen A, Ahmad S, Usman M, Jafari SM. Heat exchangers in the dairy industry. In: Thermal Processing of Food Products by Steam and Hot Water. Elsevier; 2023. p. 303–14. https://doi.org/10.1016/B978-0-12-818616-9.00003-1.

    Chapter  Google Scholar 

  12. Forsberg CH. Heat exchangers. In: Heat Transfer Principles and Applications. Elsevier; 2021. p. 305–41. https://doi.org/10.1016/B978-0-12-802296-2.00008-1.

    Chapter  Google Scholar 

  13. Smith R, Bulatov I, Pan M. Heat transfer enhancement in heat exchanger networks. In: Handbook of Process Integration (PI). Elsevier; 2023. p. 945–1015. https://doi.org/10.1016/B978-0-12-823850-9.00012-8.

    Chapter  Google Scholar 

  14. Li Z, Shafee A, Tlili I, Jafaryar M. Fundamentals of heat exchangers. In: Nanofluid in Heat Exchangers for Mechanical Systems. Elsevier; 2020. p. 1–57. https://doi.org/10.1016/B978-0-12-821923-2.00001-4.

    Chapter  Google Scholar 

  15. Xu K, Smith R (2018) Design and optimization of plate heat exchanger networks. Computer Aided Chemical Engineering. 451–6.

  16. Yogaraj D, Deepak SSK, Jegath Rakshgan G, Dwarakesh P, Vishwakarma R, Kujur PK, Anupam Rao Y. Thermal performance analysis of a counter-flow double-pipe heat exchanger using titanium oxide and zinc oxide nanofluids. Mater Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.04.293.

    Article  Google Scholar 

  17. Olabi AG, Wilberforce T, Sayed ET, Elsaid K, Rahman SMA, Abdelkareem MA. Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers. Int J Thermofluid. 2023;10:100072.

    Article  Google Scholar 

  18. Khanafer K, Assad MEH, Vafai K. Applications of nanofluids in solar thermal systems. In: Sohel Murshed SM, editor. Fundamentals and Transport Properties of Nanofluids. The Royal Society of Chemistry; 2022. p. 418–36. https://doi.org/10.1039/9781839166457-00418.

    Chapter  Google Scholar 

  19. Izadi M, El Assad Haj M. Use of nanofluids in solar energy systems. In: Design and Performance Optimization of Renewable Energy Systems. Elsevier; 2021. p. 221–50. https://doi.org/10.1016/B978-0-12-821602-6.00017-1.

    Chapter  Google Scholar 

  20. Çebi A, Celen A, Hacı Donmez A, Karakoyun Y, Celen P, Cellek MS, et al. A review of flow boiling in mini and microchannel for enhanced geometries. J Thermal Eng. 2018;4:2037–74.

    Article  Google Scholar 

  21. Radkar RN, Bhanvase BA, Barai DP, Sonawane SH. Intensified convective heat transfer using ZnO nanofluids in heat exchanger with helical coiled geometry at constant wall temperature. Mater Sci Energy Technol. 2019;2:161–70.

    Google Scholar 

  22. Zheng D, Wang J, Chen Z, Baleta J, Sundén B. Performance analysis of a plate heat exchanger using various nanofluids. Int J Heat Mass Transfer. 2020;158:119993.

    Article  CAS  Google Scholar 

  23. Said Z, Rahman SMA, El Haj AM, Alami AH. Heat transfer enhancement and life cycle analysis of a shell-and-tube heat exchanger using stable CuO/water nanofluid. Sustain Energy Technol Assess. 2019;31:306–17.

    Google Scholar 

  24. Rashidi MM, Nazari MA, Mahariq I, Assad MEH, Ali ME, Almuzaiqer R, et al. Thermophysical properties of hybrid nanofluids and the proposed models: an updated comprehensive study. Nanomaterials. 2021;11:3084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhattad A, Sarkar J, Ghosh P. Discrete phase numerical model and experimental study of hybrid nanofluid heat transfer and pressure drop in plate heat exchanger. Int Commun Heat Mass Transfer. 2018;91:262–73.

    Article  CAS  Google Scholar 

  26. Ravi Kumar NT, Bhramara P, Kirubeil A, Syam Sundar L, Singh MK, Sousa ACM. Effect of twisted tape inserts on heat transfer, friction factor of Fe3O4 nanofluids flow in a double pipe U-bend heat exchanger. Int Commun Heat Mass Transfer. 2018;95:53–62.

    Article  CAS  Google Scholar 

  27. Nakhchi ME, Esfahani JA. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94.

    Article  CAS  Google Scholar 

  28. Wang Z, Wang R, Li Z, Wang M, Wan L. Numerical investigation on the effect of cylindrical turbulator on performance of corrugated plate-fin heat exchanger. Appl Thermal Eng. 2023;230:120726.

    Article  CAS  Google Scholar 

  29. Zhang Z, Li YZ. CFD simulation on inlet configuration of plate-fin heat exchangers. Cryogenics. 2003;43:673–8.

    Article  CAS  Google Scholar 

  30. Xue Y, Ge Z, Du X, Yang L. On the heat transfer enhancement of plate fin heat exchanger. Energies. 2018;11:1398.

    Article  Google Scholar 

  31. Khoshvaght-Aliabadi M, Hormozi F, Zamzamian A. Role of channel shape on performance of plate-fin heat exchangers: experimental assessment. Int J Thermal Sci. 2014;79:183–93.

    Article  Google Scholar 

  32. Boukhadia K, Ameur H, Sahel D, Bozit M. Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger. Int J Thermal Sci. 2018;126:172–80.

    Article  Google Scholar 

  33. Wang W, Guo J, Zhang S, Yang J, Ding X, Zhan X. Numerical study on hydrodynamic characteristics of plate-fin heat exchanger using porous media approach. Comput Chem Eng Pergamon. 2014;61:30–7.

    Article  Google Scholar 

  34. Samadifar M, Toghraie D. Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. Appl Thermal Eng. 2018;133:671–81.

    Article  Google Scholar 

  35. Sun W, Liu Y, Li M, Cheng Q, Zhao L. Study on heat flow transfer characteristics and main influencing factors of waxy crude oil tank during storage heating process under dynamic thermal conditions. Energy. 2023;269:127001.

    Article  CAS  Google Scholar 

  36. Geng Y, Liu X, Li X, Zhang Y. Numerical simulation of a toroidal single-phase natural circulation loop with a k-k-ω transitional turbulence model. Nuclear Eng Technol. 2024;56(1):233–40. https://doi.org/10.1016/j.net.2023.09.030.

    Article  CAS  Google Scholar 

  37. Zhang L, Che D. Turbulence models for fluid flow and heat transfer between cross-corrugated plates. Numer Heat Transfer, Part A: Appl. 2011;60:410–40. https://doi.org/10.1080/10407782.2011.600583.

    Article  Google Scholar 

  38. Komeili Birjandi A, Eftekhari Yazdi M, Dinarvand S, Salehi GR, Tehrani P. Effect of using hybrid nanofluid in thermal management of photovoltaic panel in hot climates. Int J Photoenergy. 2021;2021:3167856.

    Article  Google Scholar 

  39. Irandoost Shahrestani M, Houshfar E, Ashjaee M, Allahvirdizadeh P. Convective heat transfer and pumping power analysis of MWCNT + Fe3O4/Water HYBRID NANOFLUID in a helical coiled heat exchanger with orthogonal Rib turbulators. Front Energy Res. 2021;9:12.

    Article  Google Scholar 

  40. Awais M, Bhuiyan AA. Heat transfer enhancement using different types of vortex generators (VGs): a review on experimental and numerical activities. Thermal Sci Eng Progress. 2018;2018:524–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Ahmadi or Mohsen Sharifpur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhuyi Nazari, M., Mukhtar, A., Mehrabi, A. et al. Effect of using hybrid nanofluid and vortex generator on thermal performance of plate–fin heat exchanger: numerical investigation. J Therm Anal Calorim 149, 4227–4237 (2024). https://doi.org/10.1007/s10973-024-12928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12928-9

Keywords

Navigation