Skip to main content
Log in

Thermo-hydraulic performance investigation of triple-tube heat exchanger with MXene-based various shape hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present investigations theoretically explored MXene-based dissimilar-shaped nanoparticle (CuO spherical, MWCNT cylindrical, Al2O3 blade, graphene platelet, and Fe3O4 brick shapes) hybrid nanofluids by 1% v/v, in a triple-tube heat exchanger (TTHX). The shape and surface effect thermophysical properties of nanofluids have been specified using a user-defined function. The operating fluid mass flow rate and temperature of inner (water), intermediate (hybrid nanofluids), and outer tubes(water) are 0.1kg s−1 at 30 ºC, 0.1–0.5kg s−1 at 70C, and 0.1kg −1s at 20 ºC, respectively. The comparative thermal performance (effectiveness, heat transfer, thermal enhancement factor, London factor, etc.), exergetic analysis (entropy production, exergy destruction, etc.), and cost–benefit ratio (CBR) have been explored. MXene-spherical hybrid nanofluid is 5.16% more efficient than water at 0.1kg s−1 in the TTHX system. MXene-cylindrical hybrid nanofluid exhibits 11.23% and 12.69% better heat transfer and performance index than DI water at the lowest mass flow rate in the TTHX system. MXene-platelet hybrid nanofluids show a reduced Nusselt number ratio for the tested mass flow rates. Entropy generation in MXene-cylindrical hybrid nanofluid is 24.11% lower than in DI water.The highest thermal performance factor (TPF) of MXene-cylindrical hybrid nanofluid in the TTHX is 1.65. The MXene-cylindrical hybrid nanofluid is the most economical in the TTHX system, followed by the MXene-brick hybrid nanofluid. Overall, Mxene-cylindrical hybrid nanofluids perform best in the TTHX system in terms of heat transfer rate, TPF, and CBR in the TTHX system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\varepsilon\) :

Effectiveness

Q :

Heat transfer rate (W)

C :

Heat capacity rate (J K1)

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

gen :

Entropy generation (W K1)

T :

Temperature (K)

μ :

Dynamic viscosity (Pa s)

φ :

Volume fraction

ρ :

Density (kg m3)

\({c}_{{\text{p}}}\) :

Specific heat (J kg1 K1)

m :

Mass flow rate (kg s1)

h:

Heat transfer coefficient (W m2 k1)

D :

Diameter of tube (m)

R :

Radius of tube (m)

TTHX:

Tripletube heat exchanger

hnf:

Hybrid nanofluid

N :

Heat transfer unit

k :

Thermal conductivity (W m1 K1)

N s :

Entropy generation number

bf:

Base fluid

hnf:

Hybrid nanofluid

i :

Inlet

o:

Outlet

N:

Normal

c:

Cold

1,2,3:

Inner, intermediate, and outer tube

References

  1. MA Dekhil JV Simo Tala O Bulliard-Sauret D Bougeard 2020 Development of an innovative heat exchanger for sensible heat storage in agro-food industry Appl Therm Eng 177 115412

    Article  Google Scholar 

  2. P Kana A Jedlikowski M Karpuk S Anisimov B Vager 2022 Heat transfer in the regenerative heat exchanger Appl Therm Eng 215 118922

    Article  Google Scholar 

  3. M Raman P Saravanan S Muthusamy S Subramaniam 2022 Studies on diesel engine exhaust gas for retrieving the waste heat through triple tube heat exchanger (TTHE) through different tubes Energy Sourc Part A: Recov Utiliz Environ Eff 44 4149 4164

    Article  CAS  Google Scholar 

  4. P Saravanan M Raman 2020 Experimental and numerical analysis of diesel engine exhaust heat recovery using triple tube heat exchanger Therm Sci 24 525 531

    Article  Google Scholar 

  5. PK Sahoo MIA Ansari AK Datta 2003 A computer based iterative solution for accurate estimation of heat transfer coefficients in a helical tube heat exchanger J Food Eng 58 211 214

    Article  Google Scholar 

  6. GA Quadir IA Badruddin NJ Salman Ahmed 2014 Numerical investigation of the performance of a triple concentric pipe heat exchanger Int J Heat Mass Transf 75 165 172

    Article  Google Scholar 

  7. J Wolf 1962 General solution of the equations of parallel flow multichannel heat exchangers Int J Heat Mass Transf 5 153 162

    Google Scholar 

  8. A Gomaa MA Halim AM Elsaid 2016 Experimental and numerical investigations of a triple concentric-tube heat exchanger Appl Therm Eng 99 1303 1315

    Article  Google Scholar 

  9. SK Singh M Mishra P Jha 2015 Experimental investigations on thermo-hydraulic behaviour of triple concentric-tube heat exchanger Proc Inst Mech Eng Part E J Proc Mech Eng 229 299 308

    Article  CAS  Google Scholar 

  10. A Ünal 1998 Theoretical analysis of triple concentric-tube heat exchangers. Part 1: mathematical modelling Int Commun Heat Mass Transf 25 949 958

    Article  Google Scholar 

  11. A Ünal 2003 Effectiveness-NTU relations for triple concentric-tube heat exchangers Int Commun Heat Mass Transf 30 261 272

    Article  Google Scholar 

  12. D Yadav A Kushwaha D Trivedee Z Upadhyay 2022 A comprehensive experimental analysis for optimal flow configurations in a triple tube heat exchanger (TTHXr) Int Commun Heat Mass Transf 138 106385

    Article  Google Scholar 

  13. R Kumar P Chandra H Singh 2023 Experimental analysis of heat transfer in a triple tube heat exchanger with spring turbulator using CuO/water nanofluid J Nanofluids 12 9 429 437

    Article  Google Scholar 

  14. S Murtaza P Kumam Z Ahmad K Sitthithakerngkiet T Sutthibutpong 2023 Fractional model of Brinkman-type nanofluid flow with fractional order Fourier’s and Fick’s laws Fractals https://doi.org/10.1142/S0218348X23401990

    Article  Google Scholar 

  15. S Murtaza P Kumam Z Ahmad M Ramzan I Ali A Saeed 2023 Computational simulation of unsteady squeezing hybrid nanofluid flow through a horizontal channel comprised of metallic nanoparticles J Nanofluids 12 5 1327 1334

    Article  Google Scholar 

  16. S Murtaza Z Ahmad IE Ali Z Akhtar F Tchier H Ahmad SW Yao 2023 Analysis and numerical simulation of fractal-fractional order non-linear couple stress nanofluid with cadmium telluride nanoparticles J King Saud Univ Sci 35 4 102618

    Article  Google Scholar 

  17. S Murtaza P Kumam M Bilal T Sutthibutpong N Rujisamphan Z Ahmad 2023 Parametric simulation of hybrid nanofluid flow consisting of cobalt ferrite nanoparticles with second-order slip and variable viscosity over an extending surface Nanotechnol Rev 12 1 20220533

    Article  CAS  Google Scholar 

  18. S Murtaza P Kumam Z Ahmad T Seangwattana IE Ali 2022 Numerical analysis of newly developed fractal-fractional model of Casson fluid with exponential memory Fractals 30 05 2240151

    Article  Google Scholar 

  19. A Afzal T Islam AR Kaladgi AM Manokar OD Samuel MA Mujtaba MEM Soudagar H Fayaz HM Ali 2022 Experimental investigation on the thermal performance of inserted helical tube three-fluid heat exchanger using graphene/water nanofluid J Therm Anal Calorim 147 5087 5100

    Article  CAS  Google Scholar 

  20. P Chokkeyee H Visvanathan 2019 Analysis on thermal and flow behavior of triple concentric tube heat exchanger handling MWCNT/water nanofluids Therm Sci 24 00 396 396

    Google Scholar 

  21. AM Elsaid MS Emad E Said GB Abdelaziz SW Sharshir ER El-Tahan MF Abd Raboo 2021 Performance and exergy analysis of different perforated rib designs of triple tubes heat exchanger employing hybrid nanofluids Int J Therm Sci 168 107006

    Article  CAS  Google Scholar 

  22. AK Tiwari S Javed HF Oztop Z Said NS Pandya 2021 Experimental and numerical investigation on the thermal performance of triple tube heat exchanger equipped with different inserts with WO3/water nanofluid under turbulent Int J Therm Sci 164 106861

    Article  CAS  Google Scholar 

  23. M Bahiraei N Mazaheri M Hanooni 2022 Employing a novel crimped-spiral rib inside a triple-tube heat exchanger working with a nanofluid for solar thermal applications: irreversibility characteristics Sustain Energy Technol Assess 52 102080

    Google Scholar 

  24. M Bahiraei LK Foong S Hosseini N Mazaheri 2021 Neural network combined with nature-inspired algorithms to estimate overall heat transfer coefficient of a ribbed triple-tube heat exchanger operating with a hybrid nanofluid Measurement 174 108967

    Article  Google Scholar 

  25. M Bahiraei N Mazaheri M Hanooni 2021 Performance enhancement of a triple-tube heat exchanger through heat transfer intensification using novel crimped-spiral ribs and nanofluid: a two-phase analysis Chem Eng Process Process Intensif. 160 108289

    Article  CAS  Google Scholar 

  26. A Reuss P Kumam T Sutthibutpong P Suttiarporn T Srisurat Z Ahmad 2023 Fractal-fractional analysis and numerical simulation for the heat transfer of ZnO+Al2O3+TiO2/DW based ternaryhybrid nanofluid J Appl Math Mech 32 1 18

    Google Scholar 

  27. M Bahiraei LK Foong S Hosseini N Mazaheri 2021 Predicting heat transfer rate of a ribbed triple-tube heat exchanger working with nanofluid using neural network enhanced by advanced optimization algorithms Powder Technol 381 459 476

    Article  CAS  Google Scholar 

  28. M Abdelmagied 2020 Thermal performance characteristics of a triple spiral tube heat exchanger Chem Eng Process Process Intensif 149 107707

    Article  CAS  Google Scholar 

  29. S Murtaza K Sitthithakerngkiet AE Ali 2022 Finite difference simulation of fractal-fractional model of electro-osmotic flow of Casson fluid in a micro channel IEEE Access 10 26682 26692

    Article  Google Scholar 

  30. M Bahiraei N Mazaheri A Rizehvandi 2019 Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs Appl Therm Eng 149 588 601

    Article  CAS  Google Scholar 

  31. T Amanuel M Mishra 2018 Investigation of thermohydraulic performance of triple concentric-tube heat exchanger with CuO/water nanofluid: numerical approach Heat Transf https://doi.org/10.1002/htj.21361

    Article  Google Scholar 

  32. N Mazaheri M Bahiraei HA Chaghakaboodi H Moayedi 2019 Analyzing performance of a ribbed triple-tube heat exchanger operated with graphene nanoplatelets nanofluid based on entropy generation and exergy destruction Int Commun Heat Mass Transf 107 55 67

    Article  CAS  Google Scholar 

  33. Y Zhang L Wang N Zhang Z Zhou 2018 Adsorptive environmental applications of MXene nanomaterials: a review RSC Adv 8 19895 19905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O Mashtalir KM Cook VN Mochalin M Crowe MW Barsoum Y Gogotsi 2014 Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media J Mater Chem A 2 14334 14338

    Article  CAS  Google Scholar 

  35. AM Jastrz A Szuplewska A Wojciechowska M Chudy A Olszyna M Birowska M Popielski JA Majewski B Scheibe V Natu 2020 On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications 2D Mater 7 025018

    Article  Google Scholar 

  36. GK Nasrallah M Al-Asmakh K Rasool KA Mahmoud 2018 Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model Environ Sci Nano 5 1002 1011

    Article  CAS  Google Scholar 

  37. L Samylingam N Aslfattahi R Saidur S Mohd A Afzal 2020 Solar energy materials and solar cells thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid Sol Energy Mater Sol Cells 218 110754

    Article  CAS  Google Scholar 

  38. MK Singh PK Jain 2018 Performance analysis of triple concentric tube heat exchanger, with ribs-a review Int J Res Pub 9 3 2321 2705

    Google Scholar 

  39. A Hossain MA Uddin R Hossen HM Afroz 2017 Experimental analysis of a triple concentric tube heat exchanger Int J Mod Stud Mech Eng 3 3 1 10

    Google Scholar 

  40. EV Timofeeva JL Routbort D Singh 2009 Particle shape effects on thermophysical properties of alumina nanofluids J Appl Phys 106 1 014304

    Article  Google Scholar 

  41. V Kumar RR Sahoo 2019 Viscosity and thermal conductivity comparative study for hybrid nanofluid in binary base fluids Heat Transf Asian Res 48 3144 3161

    Article  Google Scholar 

  42. SK Singh J Sarkar 2021 Thermohydraulic behavior of concentric tube heat exchanger inserted with conical wire coil using mono/hybrid nanofluids Int Commun Heat Mass Transf 122 105134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Rekha Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, S.K., Sahoo, R.R. & Sarkar, J. Thermo-hydraulic performance investigation of triple-tube heat exchanger with MXene-based various shape hybrid nanofluids. J Therm Anal Calorim 149, 3071–3084 (2024). https://doi.org/10.1007/s10973-024-12887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12887-1

Keywords

Navigation