Skip to main content
Log in

Categorical review of experimental and numerical studies on twist tape inserts in the single-phase flow tubular heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The review paper presents the various passive methods used in the heat exchanger in detail with their advantages and disadvantages over the active methods. The paper studies the experimental and numerical studies of twist tape as an insert due to its retrofit capability and easy handling advantages. The experimental studies are categorized based on the geometrical parameter of the twist tape insert. The twisted tape with similar geometries is compiled in the same section. For example, twist tape with a clockwise twist, anticlockwise twist, alternate twist, or twist tape with a twist and no twist in the same section. It is a concise form that basically illustrates the studies based on similar geometrical parameters. The study covers both experimental and numerical studies and presents the advantages of experimental and numerical studies over one another. There is a section that shows statistical analysis of the Nusselt number and friction factor for various swirl flow inserts with comparison to the plain tube. The selection of twist tape inserts for the heat exchanger depends upon the cost and feasibility at the required point of application of the heat exchanger. This is done by comparing the thermal performance factor of the insert in the heat exchanger. The thermal performance factor of a particular insert in a tubular heat exchanger must be greater than 1, to justify its capability as a good insert. Finally, future recommendations are suggested to further carry out the work in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52

Similar content being viewed by others

Abbreviations

HE:

Heat exchanger

HT:

Heat transfer

TT:

Twist tape

Re:

Reynolds number

Pr:

Prandtl number

Nu:

Nusselt number

Num :

Modified Nusselt number

Nup :

Nusselt number in plain tube

f :

Skin friction

f p :

Skin friction in plain tube

f m :

Modified skin friction

VG:

Vortex generators

TPF:

Thermal performance factor

TR:

Twist ratio

WF:

Working fluid

NF:

Nanofluid

D:

Diameter of tube

W:

Width of TT

m.%:

Nanoparticle concentration by mass

v.%:

Nanoparticle concentration by volume

MWCNT:

Multi-wall carbon nanotubes

References

  1. Thulukkanam K. Heat exchanger design handbook. CRC Press; 2013.

    Book  Google Scholar 

  2. Léal L, Miscevic M, Lavieille P, et al. An overview of heat transfer enhancement methods and new perspectives: focus on active methods using electroactive materials. Int J Heat Mass Transf. 2013;61(1):505–24. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.01.083.

    Article  Google Scholar 

  3. Li Y, Deng H, Xu G, Tian S. Heat transfer and pressure drop in a rotating two-pass square channel with different ribs at high rotation numbers. In: Volume 5A: heat transfer. American Society of Mechanical Engineers. 2015. https://doi.org/10.1115/GT2015-44019

  4. Amiri Delouei A, Atashafrooz M, Sajjadi H, Karimnejad S. The thermal effects of multi-walled carbon nanotube concentration on an ultrasonic vibrating finned tube heat exchanger. Int Commun Heat Mass Transfer. 2022;135: 106098. https://doi.org/10.1016/j.icheatmasstransfer.2022.106098.

    Article  CAS  Google Scholar 

  5. Viriyananon K, Mingbunjerdsuk J, Thungthong T, Chaiworapuek W. Characterization of heat transfer and friction loss of water turbulent flow in a narrow rectangular duct under 25–40 kHz ultrasonic waves. Ultrasonics. 2021;114: 106366. https://doi.org/10.1016/j.ultras.2021.106366.

    Article  PubMed  Google Scholar 

  6. Fernández J, Poulter R. Radial mass flow in electrohydrodynamically-enhanced forced heat transfer in tubes. Int J Heat Mass Transf. 1987;30(10):2125–36. https://doi.org/10.1016/0017-9310(87)90091-3.

    Article  Google Scholar 

  7. Lajvardi M, Moghimi-Rad J, Hadi I, et al. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J Magn Magn Mater. 2010;322(21):3508–13. https://doi.org/10.1016/j.jmmm.2010.06.054.

    Article  CAS  Google Scholar 

  8. Fan F, Qi C, Tu J, Ding Z. Effects of variable magnetic field on particle fouling properties of magnetic nanofluids in a novel thermal exchanger system. Int J Therm Sci. 2022;175: 107463. https://doi.org/10.1016/j.ijthermalsci.2022.107463.

    Article  CAS  Google Scholar 

  9. Martin H. Heat and mass transfer between impinging gas jets and solid surfaces. In: Advances in heat transfer. Elsevier; 1977. p. 1–60.

    Google Scholar 

  10. Singh P, Aider Y, Kaur I. Swirl jet impingement heat transfer: Effect of jet-to-target spacing, jet Reynolds number and orientation with flat target. Int J Therm Sci. 2023;184: 107993. https://doi.org/10.1016/j.ijthermalsci.2022.107993.

    Article  Google Scholar 

  11. Manglik RM, Bergles AE. Heat transfer enhancement and pressure drop in viscous liquid flows in isothermal tubes with twisted-tape inserts. Wärme- und Stoffübertragung. 1992;27(4):249–57. https://doi.org/10.1007/BF01589923.

    Article  CAS  Google Scholar 

  12. Patel BV, Sarviya RM, Rajput SPS. Experimental study of thermal characteristics of alternatively twisted swirl generator tape in a heat exchanger tube. Energy Sources Part A Recovery Utilization Environ Eff. 2022;44(4):9603–19. https://doi.org/10.1080/15567036.2022.2134520.

    Article  CAS  Google Scholar 

  13. García A, Vicente PG, Viedma A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. Int J Heat Mass Transf. 2005;48(21–22):4640–51. https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.024.

    Article  CAS  Google Scholar 

  14. Martín Subirana A, Solano JP, Herrero-Martín R, García A, Pérez-García J. Mixed convection phenomena in tubes with wire coil inserts. Therm Sci Eng Progress. 2023;42: 101839. https://doi.org/10.1016/j.tsep.2023.101839.

    Article  CAS  Google Scholar 

  15. Hosseinzadeh Kh, Mogharrebi AR, Asadi A, Paikar M, Ganji DD. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex Latent heat thermal energy storage system. J Mol Liq. 2020;300: 112347. https://doi.org/10.1016/j.molliq.2019.112347.

    Article  CAS  Google Scholar 

  16. Bošnjaković M, Muhič S. Numerical analysis of tube heat exchanger with trimmed star-shaped fins. Appl Sci. 2022;12(10):4857. https://doi.org/10.3390/app12104857.

    Article  CAS  Google Scholar 

  17. Mohammed HA, Hasan HA, Wahid MA. Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transfer. 2013;40:36–46. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.023.

    Article  CAS  Google Scholar 

  18. Shajahan MI, Stephen C, Michael JJ, Arulprakasajothi M, Rathnakumar P, Parthasarathy M. Heat transfer investigations of in-line conical strip inserts using MWCNT/water nanofluid under laminar flow condition. Int J Therm Sci. 2023;183:107844. https://doi.org/10.1016/j.ijthermalsci.2022.107844.

    Article  CAS  Google Scholar 

  19. Chen J, Zhao P, Wang Q, Zeng M. Experimental investigation of shell-side performance and optimal design of shell-and-tube heat exchanger with different flower baffles. Heat Transf Eng. 2021;42(7):613–26. https://doi.org/10.1080/01457632.2020.1716485.

    Article  CAS  Google Scholar 

  20. Al-darraji AR, Marzouk SA, Aljabr A, Almehmadi FA, Alqaed S, Kaood A. Enhancement of heat transfer in a vertical shell and tube heat exchanger using air injection and new baffles: experimental and numerical approach. Appl Therm Eng. 2024;236: 121493. https://doi.org/10.1016/j.applthermaleng.2023.121493.

    Article  Google Scholar 

  21. Bashtani I, Esfahani JA. ε-NTU analysis of turbulent flow in a corrugated double pipe heat exchanger: a numerical investigation. Appl Therm Eng. 2019;159: 113886. https://doi.org/10.1016/j.applthermaleng.2019.113886.

    Article  Google Scholar 

  22. Bashtani I, Esfahani JA, Kim KC. Effects of water-aluminum oxide nanofluid on double pipe heat exchanger with gear disc turbulators: a numerical investigation. J Taiwan Inst Chem Eng. 2021;124:63–74. https://doi.org/10.1016/j.jtice.2021.05.001.

    Article  CAS  Google Scholar 

  23. Naphon P, Nuchjapo M, Kurujareon J. Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib. Energy Convers Manag. 2006;47(18–19):3031–44. https://doi.org/10.1016/j.enconman.2006.03.023.

    Article  CAS  Google Scholar 

  24. Liao W, Lian S. Effect of compound corrugation on heat transfer performance of corrugated tube. Int J Therm Sci. 2023;185: 108036. https://doi.org/10.1016/j.ijthermalsci.2022.108036.

    Article  Google Scholar 

  25. Li X, Meng J, Guo Z. Turbulent flow and heat transfer in discrete double inclined ribs tube. Int J Heat Mass Transf. 2009;52(3–4):962–70. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.027.

    Article  CAS  Google Scholar 

  26. Deshmukh PW, Lahane S. Numerical evaluation of novel curved rib turbulators for thermal performance improvement in circular geometries. Heat Transf Eng. 2023. https://doi.org/10.1080/01457632.2023.2199537.

    Article  Google Scholar 

  27. Aroonrat K, Wongwises S. Experimental investigation of condensation heat transfer and pressure drop of R-134a flowing inside dimpled tubes with different dimpled depths. Int J Heat Mass Transf. 2019;128:783–93. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.039.

    Article  CAS  Google Scholar 

  28. Khashaei A, Ameri M, Azizifar S, Cheraghi MH. Experimental investigation on the heat transfer augmentation and friction factor inside tube enhanced with deep dimples. Int Commun Heat Mass Transf. 2023;149: 107149. https://doi.org/10.1016/j.icheatmasstransfer.2023.107149.

    Article  Google Scholar 

  29. Kananeh AB, Rausch MH, Leipertz A, Fröba AP. Dropwise condensation heat transfer on plasma-ion-implanted small horizontal tube bundles. Heat Transf Eng. 2010;31(10):821–8. https://doi.org/10.1080/01457630903547545.

    Article  CAS  Google Scholar 

  30. Al-Janabi A, Malayeri MR, Müller-Steinhagen H. Minimization of CaSO 4 deposition through surface modification. Heat Transf Eng. 2011;32(3–4):291–9. https://doi.org/10.1080/01457632.2010.495628.

    Article  CAS  Google Scholar 

  31. Hamzah JA, Nima MA. Experimental study of heat transfer enhancement in double-pipe heat exchanger integrated with metal foam fins. Arab J Sci Eng. 2020;45(7):5153–67. https://doi.org/10.1007/s13369-020-04371-3.

    Article  CAS  Google Scholar 

  32. Nilpueng K, Asirvatham LG, Dalkılıç AS, Mahian O, Ahn HS, Wongwises S. Heat transfer and fluid flow characteristics in a plate heat exchanger filled with copper foam. Heat Mass Transf. 2020;56(12):3261–71. https://doi.org/10.1007/s00231-020-02921-x.

    Article  CAS  Google Scholar 

  33. Jadhav PH, Gnanasekaran N, Mobedi M. Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger. Energy. 2023;263: 125691. https://doi.org/10.1016/j.energy.2022.125691.

    Article  CAS  Google Scholar 

  34. Mancin S, Zilio C, Diani A, Rossetto L. Experimental air heat transfer and pressure drop through copper foams. Exp Therm Fluid Sci. 2012;36:224–32. https://doi.org/10.1016/j.expthermflusci.2011.09.016.

    Article  CAS  Google Scholar 

  35. Omidi M, Farhadi M, Jafari M. Numerical study on the effect of using spiral tube with lobed cross section in double-pipe heat exchangers. J Therm Anal Calorim. 2018;134(3):2397–408. https://doi.org/10.1007/s10973-018-7579-y.

    Article  CAS  Google Scholar 

  36. Deshmukh V, Kumar R, Tyagi PK. Performance enhancement of the photovoltaic module using a semicircular serpentine channel with binary fluids mixture. Int J Green Energy. 2023;20(2):212–25. https://doi.org/10.1080/15435075.2021.2025063.

    Article  CAS  Google Scholar 

  37. Promvonge P, Koolnapadol N, Pimsarn M, Thianpong C. Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl Therm Eng. 2014;62(1):285–92. https://doi.org/10.1016/j.applthermaleng.2013.09.031.

    Article  Google Scholar 

  38. Ibrahim MM, Essa MA, Mostafa NH. A computational study of heat transfer analysis for a circular tube with conical ring turbulators. Int J Therm Sci. 2019;137:138–60. https://doi.org/10.1016/j.ijthermalsci.2018.10.028.

    Article  Google Scholar 

  39. Nakhchi ME, Esfahani JA. Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim. 2019;138(2):1423–36. https://doi.org/10.1007/s10973-019-08169-w.

    Article  CAS  Google Scholar 

  40. Zhou G, Ye Q. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl Therm Eng. 2012;37:241–8. https://doi.org/10.1016/j.applthermaleng.2011.11.024.

    Article  CAS  Google Scholar 

  41. Bashtani I, Esfahani JA, Kim KC. Hybrid CFD-ANN approach for evaluation of bio-inspired dolphins dorsal fin turbulators of heat exchanger in turbulent flow. Appl Therm Eng. 2023;219: 119422. https://doi.org/10.1016/j.applthermaleng.2022.119422.

    Article  Google Scholar 

  42. Neshumayev D, Tiikma T. Review of compound passive heat transfer enhancement techniques. In: Proceedings of the Baltic Heat Transfer Conference. 2007;1:410–424.

  43. Pal PK, Saha SK. Thermal and friction characteristics of laminar flow through square and rectangular ducts with transverse ribs and twisted tapes with and without oblique teeth. J Enhanc Heat Transf. 2010;17(1):1–21. https://doi.org/10.1615/JEnhHeatTransf.v17.i1.10.

    Article  Google Scholar 

  44. Bucak H, Yılmaz F. The current state on the thermal performance of twisted tapes: a geometrical categorisation approach. Chem Eng Process - Process Intensif. 2020;153: 107929. https://doi.org/10.1016/j.cep.2020.107929.

    Article  CAS  Google Scholar 

  45. Zhang C, Wang D, Ren K, et al. A comparative review of self-rotating and stationary twisted tape inserts in heat exchanger. Renew Sustain Energy Rev. 2016;53:433–49. https://doi.org/10.1016/j.rser.2015.08.048.

    Article  Google Scholar 

  46. Smithberg E, Landis F. Friction and forced convection heat-transfer characteristics in tubes with twisted tape Swirl generators. J Heat Transf. 1964;86(1):39–48. https://doi.org/10.1115/1.3687060.

    Article  CAS  Google Scholar 

  47. Chang SW, Yang TL, Liou JS. Heat transfer and pressure drop in tube with broken twisted tape insert. Exp Therm Fluid Sci. 2007;32(2):489–501. https://doi.org/10.1016/j.expthermflusci.2007.06.002.

    Article  CAS  Google Scholar 

  48. Manglik RM, Bergles AE. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part i—laminar flows. J Heat Transf. 1993;115(4):881–9. https://doi.org/10.1115/1.2911383.

    Article  CAS  Google Scholar 

  49. Manglik RM, Bergles AE. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part ii—transition and turbulent flows. J Heat Transfer. 1993;115(4):890–6. https://doi.org/10.1115/1.2911384.

    Article  CAS  Google Scholar 

  50. Wang L, Sundén B. Performance comparison of some tube inserts. Int Commun Heat Mass Transf. 2002;29(1):45–56. https://doi.org/10.1016/S0735-1933(01)00323-2.

    Article  Google Scholar 

  51. Man C, Yao J, Wang C. The experimental study on the heat transfer and friction factor characteristics in tube with a new kind of twisted tape insert. Int Commun Heat Mass Transf. 2016;75:124–9. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.003.

    Article  Google Scholar 

  52. Maddah H, Alizadeh M, Ghasemi N, Wan Alwi SR. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int J Heat Mass Transf. 2014;78:1042–54. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.059.

    Article  CAS  Google Scholar 

  53. Khoshvaght-Aliabadi M, Eskandari M. Influence of twist length variations on thermal–hydraulic specifications of twisted-tape inserts in presence of Cu–water nanofluid. Exp Therm Fluid Sci. 2015;61:230–40. https://doi.org/10.1016/j.expthermflusci.2014.11.004.

    Article  CAS  Google Scholar 

  54. Moya-Rico JD, Molina AE, Belmonte JF, Córcoles Tendero JI, Almendros-Ibáñez JA. Experimental characterization of a double tube heat exchanger with inserted twisted tape elements. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2020.115234.

    Article  Google Scholar 

  55. Jaisankar S, Radhakrishnan TK, Sheeba KN, Suresh S. Experimental investigation of heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of Left-Right twisted tapes. Energy Convers Manag. 2009;50(10):2638–49. https://doi.org/10.1016/j.enconman.2009.06.019.

    Article  Google Scholar 

  56. Eiamsa-ard S, Somkleang P, Nuntadusit C, Thianpong C. Heat transfer enhancement in tube by inserting uniform/non-uniform twisted-tapes with alternate axes: effect of rotated-axis length. Appl Therm Eng. 2013;54(1):289–309. https://doi.org/10.1016/j.applthermaleng.2013.01.041.

    Article  Google Scholar 

  57. Murugesan P, Mayilsamy K, Suresh S, Srinivasan PSS. Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. Int Commun Heat Mass Transf. 2011;38(3):329–34. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.010.

    Article  Google Scholar 

  58. Murugesan P, Mayilsamy K, Suresh S. Turbulent heat transfer and pressure drop in tube fitted with square-cut twisted tape. Chin J Chem Eng. 2010;18(4):609–17. https://doi.org/10.1016/S1004-9541(10)60264-9.

    Article  CAS  Google Scholar 

  59. Murugesan P, Mayilsamy K, Suresh S. Heat transfer in tubes fitted with trapezoidal-cut and plain twisted tape inserts. Chem Eng Commun. 2011;198(7):886–904. https://doi.org/10.1080/00986445.2011.545294.

    Article  CAS  Google Scholar 

  60. Murugesan P, Mayilsamy K, Sures S. Heat transfer and friction factor in a tube equipped with U-cut twisted tape insert. JJMIE. 2011;5(6):559–65.

    Google Scholar 

  61. Murugesan P, Mayilsamy K, Suresh S. Heat transfer in a tube fitted with vertical and horizontal wing-cut twisted tapes. Exp Heat Transf. 2012;25(1):30–47. https://doi.org/10.1080/08916152.2011.559567.

    Article  Google Scholar 

  62. Sarviya RM, Fuskele V. Heat transfer and pressure drop in a circular tube fitted with twisted tape insert having continuous cut edges. J Energy Storage. 2018;19:10–4. https://doi.org/10.1016/j.est.2018.07.001.

    Article  Google Scholar 

  63. Nakhchi ME, Hatami M, Rahmati M. Experimental investigation of heat transfer enhancement of a heat exchanger tube equipped with double-cut twisted tapes. Appl Therm Eng. 2020;180: 115863. https://doi.org/10.1016/j.applthermaleng.2020.115863.

    Article  Google Scholar 

  64. Thianpong C, Wongcharee K, Safikhani H, et al. Multi objective optimization of TiO2/water nanofluid flow within a heat exchanger enhanced with loose-fit delta-wing twisted tape inserts. Int J Therm Sci. 2022;172: 107318. https://doi.org/10.1016/j.ijthermalsci.2021.107318.

    Article  CAS  Google Scholar 

  65. Eiamsa-ard S, Wongcharee K, Eiamsa-ard P, Thianpong C. Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Appl Therm Eng. 2010;30(4):310–8. https://doi.org/10.1016/J.APPLTHERMALENG.2009.09.006.

    Article  Google Scholar 

  66. Dagdevir T, Ozceyhan V. A comprehensive second law analysis for a heat exchanger tube equipped with the rod inserted straight and twisted tape and using water/CuO nanofluid. Int J Therm Sci. 2022;181: 107765. https://doi.org/10.1016/J.IJTHERMALSCI.2022.107765.

    Article  CAS  Google Scholar 

  67. Chuwattanakul V, Wongcharee K, Ketain P, Chamoli S, Thianpong C, Eiamsa-ard S. Aerothermal performance evaluation of a tube mounted with broken V-ribbed twisted tape: effect of forward/backward arrangement. Case Stud Therm Eng. 2023;41: 102642. https://doi.org/10.1016/j.csite.2022.102642.

    Article  Google Scholar 

  68. Abolarin SM, Everts M, Meyer JP. Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime. Int J Heat Mass Transf. 2019;133:203–17. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.107.

    Article  Google Scholar 

  69. Sharma KV, Sundar LS, Sarma PK. Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int Commun Heat Mass Transf. 2009;36(5):503–7. https://doi.org/10.1016/j.icheatmasstransfer.2009.02.011.

    Article  CAS  Google Scholar 

  70. Eiamsa-ard P, Piriyarungroj N, Thianpong C, Eiamsa-ard S. A case study on thermal performance assessment of a heat exchanger tube equipped with regularly-spaced twisted tapes as swirl generators. Case Stud Therm Eng. 2014;3:86–102. https://doi.org/10.1016/j.csite.2014.04.002.

    Article  Google Scholar 

  71. Eiamsa-ard S. Study on thermal and fluid flow characteristics in turbulent channel flows with multiple twisted tape vortex generators. Int Commun Heat Mass Transf. 2010;37(6):644–51. https://doi.org/10.1016/j.icheatmasstransfer.2010.02.004.

    Article  Google Scholar 

  72. Vashistha C, Patil AK, Kumar M. Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl Therm Eng. 2016;96:117–29. https://doi.org/10.1016/J.APPLTHERMALENG.2015.11.077.

    Article  Google Scholar 

  73. Thianpong C, Eiamsa-ard P, Eiamsa-ard S. Heat transfer and thermal performance characteristics of heat exchanger tube fitted with perforated twisted-tapes. Heat Mass Transf. 2012;48(6):881–92. https://doi.org/10.1007/s00231-011-0943-0.

    Article  CAS  Google Scholar 

  74. Suri ARS, Kumar A, Maithani R. Heat transfer enhancement of heat exchanger tube with multiple square perforated twisted tape inserts: experimental investigation and correlation development. Chem Eng Process. 2017;116:76–96. https://doi.org/10.1016/J.CEP.2017.02.014.

    Article  CAS  Google Scholar 

  75. Jaisankar S, Radhakrishnan TK, Sheeba KN. Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and Left-Right twisted tapes. Energy Convers Manag. 2011;52(5):2048–55. https://doi.org/10.1016/j.enconman.2010.11.024.

    Article  Google Scholar 

  76. Zhao Y, Yu B, Yu G, Li W. Study on the water-heat coupled phenomena in thawing frozen soil around a buried oil pipeline. Appl Therm Eng. 2014;73(2):1477–88. https://doi.org/10.1016/j.applthermaleng.2014.06.017.

    Article  Google Scholar 

  77. Dagdevir T, Ozceyhan V. An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts. Int J Therm Sci. 2021;159: 106564. https://doi.org/10.1016/J.IJTHERMALSCI.2020.106564.

    Article  CAS  Google Scholar 

  78. Al-Fahed S, Chamra LM, Chakroun W. Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow. Exp Therm Fluid Sci. 1998;18(4):323–33. https://doi.org/10.1016/S0894-1777(98)10037-7.

    Article  CAS  Google Scholar 

  79. Lokanath MS, Misal RD. An experimental study on the performance of plate heat exchanger and an augmented shell and tube heat exchanger for different types of fluids for marine applications. In: Proceedings of 5th ISHMT–ASME heat and mass transfer conference, India. New Delhi: Tata McGraw-Hill; 2002. p. 863–868.

  80. Saha SK, Bhunia K. Heat transfer and pressure drop characteristics of varying pitch twisted-tape-generated laminar smooth swirl flow. In: Proceedings of 4th ISHMT–ASME heat and mass transfer conference, India. New Delhi: Tata McGraw-Hill; 2000. p. 423–428.

  81. Altun AH, Ors S, Dogan S. Investigation of effects on turbulent heat transfer of twisted wavy tape elements in the tube. Int J Therm Sci. 2023;185: 108068. https://doi.org/10.1016/j.ijthermalsci.2022.108068.

    Article  Google Scholar 

  82. Bhattacharyya S, Bashir AI, Dey K, Sarkar R. Effect of novel short-length wavy-tape turbulators on fluid flow and heat transfer: experimental study. Exp Heat Transf. 2020;33(4):335–54. https://doi.org/10.1080/08916152.2019.1639847.

    Article  Google Scholar 

  83. Vishwakarma DK, Bhattacharyya S, Soni MK, Goel V, Meyer JP. Evaluating the heat transfer and pressure drop in the transitional flow regime for a horizontal circular tube fitted with wavy-tape inserts. Int J Therm Sci. 2024;196: 108677. https://doi.org/10.1016/j.ijthermalsci.2023.108677.

    Article  Google Scholar 

  84. Altun AH, Nacak H, Canli E. Effects of trapezoidal and twisted trapezoidal tapes on turbulent heat transfer in tubes. Appl Therm Eng. 2022;211: 118386. https://doi.org/10.1016/j.applthermaleng.2022.118386.

    Article  Google Scholar 

  85. Dandoutiya BK, Kumar A. Study of thermal performance of double pipe heat exchanger using W-cut twisted tape. Energy Sources Part A: Recovery Utilization Environ Eff. 2023;45(2):5221–38. https://doi.org/10.1080/15567036.2023.2207497.

    Article  CAS  Google Scholar 

  86. Singh SK, Kacker R, Chaurasiya PK, Gautam SS. Correlations on heat transfer rate and friction factor of a rectangular toothed v-cut twisted tape exhibiting the combined effects of primary and secondary vortex flows. Int Commun Heat Mass Transf. 2022;139: 106503. https://doi.org/10.1016/j.icheatmasstransfer.2022.106503.

    Article  Google Scholar 

  87. Samutpraphut B, Eiamsa-ard S, Chuwattanakul V, Thianpong C, Maruyama N, Hirota M. Influence of sawtooth twisted tape on thermal enhancement of heat exchanger tube. Energy Rep. 2023;9:696–703. https://doi.org/10.1016/j.egyr.2022.11.029.

    Article  Google Scholar 

  88. Paneliya S, Khanna S, Mankad V, Ray A, Prajapati P, Mukhopadhyay I. Comparative study of heat transfer characteristics of a tube equipped with X-shaped and twisted tape insert. Mater Today Proc. 2020;28:1175–80. https://doi.org/10.1016/j.matpr.2020.01.103.

    Article  CAS  Google Scholar 

  89. Promvonge P, Suwannapan S, Pimsarn M, Thianpong C. Experimental study on heat transfer in square duct with combined twisted-tape and winglet vortex generators. Int Commun Heat Mass Transf. 2014;59:158–65. https://doi.org/10.1016/j.icheatmasstransfer.2014.10.005.

    Article  Google Scholar 

  90. Soltani MM, Gorji-Bandpy M, Vaisi A, Moosavi R. Heat transfer augmentation in a double-pipe heat exchanger with dimpled twisted tape inserts: an experimental study. Heat Mass Transf. 2022;58(9):1591–606. https://doi.org/10.1007/s00231-022-03189-z.

    Article  CAS  Google Scholar 

  91. Dagdevir T, Uyanik M, Ozceyhan V. The experimental thermal and hydraulic performance analyses for the location of perforations and dimples on the twisted tapes in twisted tape inserted tube. Int J Therm Sci. 2021;167: 107033. https://doi.org/10.1016/j.ijthermalsci.2021.107033.

    Article  Google Scholar 

  92. Esmaeilzadeh E, Almohammadi H, Nokhosteen A, Motezaker A, Omrani AN. Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube with twisted tape inserts with different thicknesses. Int J Therm Sci. 2014;82:72–83. https://doi.org/10.1016/j.ijthermalsci.2014.03.005.

    Article  CAS  Google Scholar 

  93. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: Argonne National Lab.(ANL). 1995

  94. Godson L, Raja B, Mohan Lal D, Wongwises S. Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev. 2010;14(2):629–41. https://doi.org/10.1016/J.RSER.2009.10.004.

    Article  CAS  Google Scholar 

  95. Hui-Jiuan C, Wen D. Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Res Lett. 2011;6(1):1–8.

    Google Scholar 

  96. Raja Sekhar Y, Sharma KV, Thundil Karupparaj R, Chiranjeevi C. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Proc Eng. 2013;64:1474–84. https://doi.org/10.1016/j.proeng.2013.09.229.

    Article  CAS  Google Scholar 

  97. Wongcharee K, Eiamsa-ard S. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int Commun Heat Mass Transf. 2011;38(6):742–8. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2011.03.011.

    Article  CAS  Google Scholar 

  98. Khoshvaght-Aliabadi M, Davoudi S, Dibaei MH. Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chem Eng Res Des. 2018;133:26–39. https://doi.org/10.1016/j.cherd.2018.02.030.

    Article  CAS  Google Scholar 

  99. Deshmukh K, Karmare S, Patil P. Experimental investigation of convective heat transfer inside tube with stable plasmonic TiN nanofluid and twisted tape combination for solar thermal applications. Heat Mass Transf. 2023. https://doi.org/10.1007/s00231-023-03344-0.

    Article  Google Scholar 

  100. Naik MT, Janardana GR, Sundar LS. Experimental investigation of heat transfer and friction factor with water–propylene glycol based CuO nanofluid in a tube with twisted tape inserts. Int Commun Heat Mass Transf. 2013;46:13–21. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2013.05.007.

    Article  CAS  Google Scholar 

  101. Hazbehian M, Maddah H, Mohammadiun H, Alizadeh M. Experimental investigation of heat transfer augmentation inside double pipe heat exchanger equipped with reduced width twisted tapes inserts using polymeric nanofluid. Heat Mass Transf. 2016;52(11):2515–29. https://doi.org/10.1007/s00231-016-1764-y.

    Article  CAS  Google Scholar 

  102. Singh SK, Sarkar J. Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid. J Therm Anal Calorim. 2021;143(6):4287–98. https://doi.org/10.1007/s10973-020-09380-w.

    Article  CAS  Google Scholar 

  103. Mageshbabu D, Sathyamurthy R, Muthiya SJ, et al. Heat transfer and hydraulic characteristics of micro finned tube inserted with twisted tape inserts and hybrid nanofluid (CNT/Al2O3). Adv Mater Process Technol. 2021;8(sup1):166–77. https://doi.org/10.1080/2374068X.2021.1872245.

    Article  Google Scholar 

  104. Dalkılıç AS, Türk OA, Mercan H, Nakkaew S, Wongwises S. An experimental investigation on heat transfer characteristics of graphiteSiO2/water hybrid nanofluid flow in horizontal tube with various quadchannel twisted tape inserts. International Communications in Heat and Mass Transfer. Published online 2019:1–13.

  105. Maddah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3-TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002.

    Article  CAS  Google Scholar 

  106. Syam Sundar L. Heat transfer, friction factor and exergy efficiency analysis of nanodiamond-Fe3O4/water hybrid nanofluids in a tube with twisted tape inserts. Ain Shams Eng J. 2022. https://doi.org/10.1016/j.asej.2022.102068.

    Article  Google Scholar 

  107. Sundar LS, Singh MK, Sousa ACM. Experimental study on heat transfer and friction factor of nanodiamond-nickel (ND-Ni) nanocomposite nanofluids flow in a tube with twisted tape inserts. J Nanofluids. 2018;8(5):980–9. https://doi.org/10.1166/jon.2019.1668.

    Article  Google Scholar 

  108. Tyagi PK, Kumar R, Mondal PK. A review of the state-of-the-art nanofluid spray and jet impingement cooling. Phys Fluids. 2020;32(12): 121301. https://doi.org/10.1063/5.0033503.

    Article  CAS  Google Scholar 

  109. Muneeshwaran M, Srinivasan G, Muthukumar P, Wang CC. Role of hybrid-nanofluid in heat transfer enhancement–a review. Int Commun Heat Mass Transf. 2021;125: 105341. https://doi.org/10.1016/j.icheatmasstransfer.2021.105341.

    Article  CAS  Google Scholar 

  110. Mustafa J, Alqaed S, Aybar HŞ, Husain S. Investigation of the effect of twisted tape turbulators on thermal-hydraulic behavior of parabolic solar collector with polymer hybrid nanofluid and exergy analysis using numerical method and ANN. Eng Anal Bound Elem. 2022;144:81–93. https://doi.org/10.1016/j.enganabound.2022.08.011.

    Article  Google Scholar 

  111. Wang D, Ali MA, Sharma K, et al. Multiphase numerical simulation of exergy loss and thermo-hydraulic behavior with environmental cosiderations of a hybrid nanofluid in a shell-and-tube heat exchanger with twisted tape. Eng Anal Bound Elem. 2023;147:1–10. https://doi.org/10.1016/j.enganabound.2022.11.024.

    Article  CAS  Google Scholar 

  112. Tavakoli M, Soufivand MR. Investigation of entropy generation, PEC, and efficiency of parabolic solar collector containing water/Al2O3−MWCNT hybrid nanofluid in the presence of finned and perforated twisted tape turbulators using a two-phase flow scheme. Eng Anal Bound Elem. 2023;148:324–35. https://doi.org/10.1016/j.enganabound.2022.12.022.

    Article  Google Scholar 

  113. El-Shafay AS, Mohamed AM, Ağbulut Ü, Gad MS. Investigation of the effect of magnetic field on the PEC and exergy of heat exchanger filled with two-phase hybrid nanofluid, equipped with an edged twisted tape. Eng Anal Bound Elem. 2023;148:153–64. https://doi.org/10.1016/j.enganabound.2022.12.025.

    Article  Google Scholar 

  114. Bantan RAR, Abu-Hamdeh NH, AlQemlas T, Elamin AMA. Heat transfer improvement of hybrid nanofluid with use of twisted tapes within a heat exchanger. Alex Eng J. 2023;70:673–84. https://doi.org/10.1016/j.aej.2023.03.016.

    Article  Google Scholar 

  115. Mageshbabu D, Sathyamurthy R, et al. Heat transfer and hydraulic characteristics of micro finned tube inserted with twisted tape inserts and hybrid nanofluid (CNT/Al2O3). Adv Mater Process Technol. 2022;8(sup1):166–77. https://doi.org/10.1080/2374068X.2021.1872245.

    Article  Google Scholar 

  116. Hamza NFA, Aljabair S. Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger. Heliyon. 2022;8(12):e11950. https://doi.org/10.1016/j.heliyon.2022.e11950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Balaga R, Koona R, Tunuguntla S. Heat transfer enhancement of the f-MWCNT- Fe2O3/Water hybrid nanofluid with the combined effect of wire coil with twisted tape and perforated twisted tape. Int J Therm Sci. 2023;184: 108023. https://doi.org/10.1016/j.ijthermalsci.2022.108023.

    Article  CAS  Google Scholar 

  118. Chaurasia SR, Sarviya RM. Thermal performance analysis of CuO/water nanofluid flow in a pipe with single and double strip helical screw tape. Appl Therm Eng. 2020;166: 114631. https://doi.org/10.1016/j.applthermaleng.2019.114631.

    Article  CAS  Google Scholar 

  119. Nanan K, Thianpong C, Promvonge P, Eiamsa-ard S. Investigation of heat transfer enhancement by perforated helical twisted-tapes. Int Commun Heat Mass Transf. 2014;52:106–12. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.018.

    Article  Google Scholar 

  120. Eiamsa-ard S, Changcharoen W, Beigzadeh R, Eiamsa-ard P, Wongcharee K, Chuwattanakul V. Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification. Chem Eng Process Process Intensif. 2021;160: 108304. https://doi.org/10.1016/j.cep.2021.108304.

    Article  CAS  Google Scholar 

  121. Eiamsa-ard S, Changcharoen W, Beigzadeh R, Eiamsa-ard P, Wongcharee K, Chuwattanakul V. Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification. Chem Eng Process Process Intensif. 2021. https://doi.org/10.1016/j.cep.2021.108304.

    Article  Google Scholar 

  122. Singh Suri AR, Kumar A, Maithani R. Effect of square wings in multiple square perforated twisted tapes on fluid flow and heat transfer of heat exchanger tube. Case Stud Therm Eng. 2017;10:28–43. https://doi.org/10.1016/j.csite.2017.03.002.

    Article  Google Scholar 

  123. Bhuiya MMK, Chowdhury MSU, Shahabuddin M, Saha M, Memon LA. Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts. Int Commun Heat Mass Transf. 2013;48:124–32. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2013.08.024.

    Article  Google Scholar 

  124. Bhuiya MMK, Roshid MM, Talukder MMM, Rasul MG, Das P. Influence of perforated triple twisted tape on thermal performance characteristics of a tube heat exchanger. Appl Therm Eng. 2020;167: 114769. https://doi.org/10.1016/J.APPLTHERMALENG.2019.114769.

    Article  Google Scholar 

  125. Samruaisin P, Changcharoen W, Thianpong C, Chuwattanakul V, Pimsarn M, Eiamsa-ard S. Influence of regularly spaced quadruple twisted tape elements on thermal enhancement characteristics. Chem Eng Process Process Intensif. 2018;128:114–23. https://doi.org/10.1016/J.CEP.2018.04.014.

    Article  CAS  Google Scholar 

  126. Piriyarungrod N, Kumar M, Thianpong C, Pimsarn M, Chuwattanakul V, Eiamsa-ard S. Intensification of thermo-hydraulic performance in heat exchanger tube inserted with multiple twisted-tapes. Appl Therm Eng. 2018;136:516–30. https://doi.org/10.1016/J.APPLTHERMALENG.2018.02.097.

    Article  Google Scholar 

  127. Promvonge P, Eiamsa-ard S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. Int Commun Heat Mass Transf. 2007;34(7):849–59. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2007.03.019.

    Article  Google Scholar 

  128. Pimsarn M, Samruaisin P, Thianpong C, et al. Performance of a heat exchanger with compound inclined circular-rings and twisted tapes. Case Stud Therm Eng. 2022;37: 102285. https://doi.org/10.1016/J.CSITE.2022.102285.

    Article  Google Scholar 

  129. Bharadwaj P, Khondge AD, Date AW. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert. Int J Heat Mass Transf. 2009;52(7–8):1938–44. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2008.08.038.

    Article  CAS  Google Scholar 

  130. Promvonge P, Pethkool S, Pimsarn M, Thianpong C. Heat transfer augmentation in a helical-ribbed tube with double twisted tape inserts. Int Commun Heat Mass Transf. 2012;39(7):953–9. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2012.05.015.

    Article  Google Scholar 

  131. Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S. Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int Commun Heat Mass Transf. 2009;36(7):698–704. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2009.03.026.

    Article  CAS  Google Scholar 

  132. Pal S, Saha SK. Experimental investigation of laminar flow of viscous oil through a circular tube having integral axial corrugation roughness and fitted with twisted tapes with oblique teeth. Heat Mass Transf. 2015;51(8):1189–201. https://doi.org/10.1007/s00231-014-1489-8.

    Article  CAS  Google Scholar 

  133. Zhu XW, Fu YH, Zhao JQ. A novel wavy-tape insert configuration for pipe heat transfer augmentation. Energy Convers Manag. 2016;127:140–8. https://doi.org/10.1016/J.ENCONMAN.2016.09.006.

    Article  Google Scholar 

  134. Liang Y, Liu P, Zheng N, Shan F, Liu Z, Liu W. Numerical investigation of heat transfer and flow characteristics of laminar flow in a tube with center-tapered wavy-tape insert. Appl Therm Eng. 2019;148:557–67. https://doi.org/10.1016/j.applthermaleng.2018.11.090.

    Article  Google Scholar 

  135. Sheikholeslami M, Ebrahimpour Z. Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape. Int J Therm Sci. 2022;176: 107505. https://doi.org/10.1016/J.IJTHERMALSCI.2022.107505.

    Article  CAS  Google Scholar 

  136. Kummitha OR, Bandi VRR, Pandey KM. 3D numerical analysis for thermal-hydraulic characteristics of water flow inside a circular tube with twisted tape with helical protrusions. Proc Eng. 2015;127:1134–41. https://doi.org/10.1016/j.proeng.2015.11.478.

    Article  Google Scholar 

  137. Ghadirijafarbeigloo Sh, Zamzamian AH, Yaghoubi M. 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Proc. 2014;49:373–80. https://doi.org/10.1016/j.egypro.2014.03.040.

    Article  Google Scholar 

  138. Liu X, Li C, Cao X, Yan C, Ding M. Numerical analysis on enhanced performance of new coaxial cross twisted tapes for laminar convective heat transfer. Int J Heat Mass Transf. 2018;121:1125–36. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.052.

    Article  Google Scholar 

  139. Bucak H, Yilmaz F. Heat transfer augmentation using periodically spherical dimple-protrusion patterned walls of twisted tape. Int J Therm Sci. 2022;171: 107211. https://doi.org/10.1016/j.ijthermalsci.2021.107211.

    Article  Google Scholar 

  140. Bucak H, Yilmaz F. Thermo-hydraulic performance investigation of twisted tapes having teardrop-shaped dimple-protrusion patterns. Chem Eng Process Process Intensif. 2021;168: 108593. https://doi.org/10.1016/j.cep.2021.108593.

    Article  CAS  Google Scholar 

  141. Zheng L, Xie Y, Zhang D. Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid. Int J Heat Mass Transf. 2017;111:962–81. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.04.062.

    Article  CAS  Google Scholar 

  142. Harish H, Manjunath K. Heat and fluid flow behaviors in a laminar tube flow with circular protruded twisted tape inserts. Case Stud Therm Eng. 2022;32:101880. https://doi.org/10.1016/j.csite.2022.101880.

    Article  Google Scholar 

  143. Wang Y, Qi C, Ding Z, Tu J, Zhao R. Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube. Powder Technol. 2021;392:570–86. https://doi.org/10.1016/j.powtec.2021.07.066.

    Article  CAS  Google Scholar 

  144. Hassan MA, Kassem MA, Kaood A. Numerical investigation and multi-criteria optimization of the thermal–hydraulic characteristics of turbulent flow in conical tubes fitted with twisted tape insert. J Therm Anal Calorim. 2022;147(12):6847–68. https://doi.org/10.1007/s10973-021-10998-7.

    Article  CAS  Google Scholar 

  145. Song YQ, Izadpanahi N, Fazilati MA, Lv YP, Toghraie D. Numerical analysis of flow and heat transfer in an elliptical duct fitted with two rotating twisted tapes. Int Commun Heat Mass Transf. 2021;125: 105328. https://doi.org/10.1016/j.icheatmasstransfer.2021.105328.

    Article  Google Scholar 

  146. Kumar P, Sarviya RM. Numerical investigation of heat transfer augmentation and frictional loss characteristics in heat exchanger tube with the use of novel perforated rectangular cut twisted tape. Energy Sources Part A: Recovery Utilization Environ Eff. 2023;45(1):2346–61. https://doi.org/10.1080/15567036.2023.2187898.

    Article  Google Scholar 

  147. Oni TO, Paul MC. Numerical investigation of heat transfer and fluid flow of water through a circular tube induced with divers’ tape inserts. Appl Therm Eng. 2016;98:157–68. https://doi.org/10.1016/j.applthermaleng.2015.12.039.

    Article  Google Scholar 

  148. Kalateh MR, Kianifar A, Sardarabadi M. A three-dimensional numerical study of the effects of various twisted tapes on heat transfer characteristics and flow field in a tube: experimental validation and multi-objective optimization via response surface methodology. Sustain Energy Technol Assess. 2022;50: 101798. https://doi.org/10.1016/j.seta.2021.101798.

    Article  Google Scholar 

  149. Rajan A, Prasad L. Performance investigation of heat exchanger tube fitted with hyperbolic-cut twisted tape in turbulent flow. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(14):8134–49. https://doi.org/10.1177/09544062221085102.

    Article  Google Scholar 

  150. Kola PVKV, Pisipaty SK, Mendu SS, Ghosh R. Optimization of performance parameters of a double pipe heat exchanger with cut twisted tapes using CFD and RSM. Chem Eng Process Process Intensif. 2021;163: 108362. https://doi.org/10.1016/J.CEP.2021.108362.

    Article  CAS  Google Scholar 

  151. Nakhchi ME, Esfahani JA. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94. https://doi.org/10.1016/j.powtec.2018.08.087.

    Article  CAS  Google Scholar 

  152. Eiamsa-ard S, Kiatkittipong K, Jedsadaratanachai W. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes. Eng Sci Technol Int J. 2015;18(3):336–50. https://doi.org/10.1016/j.jestch.2015.01.008.

    Article  Google Scholar 

  153. Gnanavel C, Saravanan R, Chandrasekaran M. Heat transfer enhancement through nano-fluids and twisted tape insert with rectangular cut on its rib in a double pipe heat exchanger. Mater Today Proc. 2020;21:865–9. https://doi.org/10.1016/j.matpr.2019.07.606.

    Article  CAS  Google Scholar 

  154. Khetib Y, Alzaed A, Tahmasebi A, Sharifpur M, Cheraghian G. Influence of using innovative turbulators on the exergy and energy efficacy of flat plate solar collector with DWCNTs-TiO2/water nanofluid. Sustain Energy Technol Assess. 2022;51: 101855. https://doi.org/10.1016/j.seta.2021.101855.

    Article  Google Scholar 

  155. Bahiraei M, Mazaheri N, Hassanzamani SM. Efficacy of a new graphene–platinum nanofluid in tubes fitted with single and twin twisted tapes regarding counter and co-swirling flows for efficient use of energy. Int J Mech Sci. 2019;150:290–303. https://doi.org/10.1016/j.ijmecsci.2018.10.036.

    Article  Google Scholar 

  156. Sheikholeslami M. Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Sol Energy Mater Sol Cells. 2022;243: 111786. https://doi.org/10.1016/j.solmat.2022.111786.

    Article  CAS  Google Scholar 

  157. Rios-Iribe EY, Cervantes-Gaxiola ME, Rubio-Castro E, et al. Heat transfer analysis of a non-Newtonian fluid flowing through a circular tube with twisted tape inserts. Appl Therm Eng. 2015;84:225–36. https://doi.org/10.1016/j.applthermaleng.2015.03.052.

    Article  Google Scholar 

  158. Bazdidi-Tehrani F, Khanmohamadi SM, Vasefi SI. Evaluation of turbulent forced convection of non-Newtonian aqueous solution of CMC/CuO nanofluid in a tube with twisted tape inserts. Adv Powder Technol. 2020;31(3):1100–13. https://doi.org/10.1016/j.apt.2019.12.022.

    Article  CAS  Google Scholar 

  159. Shahsavar A, Bakhshizadeh MA, Arici M, Afrand M, Rostami S. Numerical study of the possibility of improving the hydrothermal performance of an elliptical double-pipe heat exchanger through the simultaneous use of twisted tubes and non-Newtonian nanofluid. J Therm Anal Calorim. 2021;143(3):2825–40. https://doi.org/10.1007/s10973-020-10201-3.

    Article  CAS  Google Scholar 

  160. Luo J, Alghamdi A, Aldawi F, et al. Thermal-frictional behavior of new special shape twisted tape and helical coiled wire turbulators in engine heat exchangers system. Case Stud Therm Eng. 2024;53: 103877. https://doi.org/10.1016/j.csite.2023.103877.

    Article  Google Scholar 

  161. Manohar A, Ali ES, Jayasankar M, Alfhan KTAKT. Fluid flow and heat transfer characteristics of heat exchanger equipped with Y-twisted tape insert. SSRN Electron J. 2023. https://doi.org/10.2139/ssrn.4515367.

    Article  Google Scholar 

  162. Noorbakhsh M, Ajarostaghi SSM, Zaboli M, Kiani B. Thermal analysis of nanofluids flow in a double pipe heat exchanger with twisted tapes insert in both sides. J Therm Anal Calorim. 2022;147(5):3965–76. https://doi.org/10.1007/s10973-021-10738-x.

    Article  CAS  Google Scholar 

  163. Taheripour S, Saffarian MR, Azimy N, Aghajari M. Numerical evaluation of the effect of using various twisted-tape geometries on heat transfer enhancement and flow characteristics in a tube. J Therm Anal Calorim. 2023;148(15):7829–44. https://doi.org/10.1007/s10973-023-12264-4.

    Article  CAS  Google Scholar 

  164. Hayat MZ, Nandan G, Tiwari AK, Sharma SK, Shrivastava R, Singh AK. Numerical study on heat transfer enhancement using twisted tape with trapezoidal ribs in an internal flow. Mater Today Proc. 2021;46:5412–9. https://doi.org/10.1016/j.matpr.2020.09.061.

    Article  Google Scholar 

  165. Hong Y, Zhao L, Huang Y, Li Q, Jiang J, Du J. Turbulent thermal-hydraulic characteristics in a spiral corrugated waste heat recovery heat exchanger with perforated multiple twisted tapes. Int J Therm Sci. 2023;184: 108025. https://doi.org/10.1016/j.ijthermalsci.2022.108025.

    Article  CAS  Google Scholar 

  166. Hamzeei S, Sedeh SN, Azimy N, Akbari M, Ahmadi SAM. The effect of alphabet-shaped twisted tape on thermo-fluidic properties in a shell-tube type heat exchanger: a comparative study utilizing a two-phase mixture model. Eng Anal Bound Elem. 2024;159:122–37. https://doi.org/10.1016/j.enganabound.2023.11.011.

    Article  Google Scholar 

  167. Yu C, Cui Y, Zhang H, Gao B, Zeng M, Han L. Comparative study on turbulent flow characteristics and heat transfer mechanism of a twisted oval tube with different twisted tapes. Int J Therm Sci. 2022;174: 107455. https://doi.org/10.1016/j.ijthermalsci.2021.107455.

    Article  Google Scholar 

  168. Khfagi AM, Hunt G, Paul MC, Karimi N. Entropy generation and thermohydraulics of mixed convection of hybrid-nanofluid in a vertical tube fitted with elliptical-cut twisted tape inserts-a computational study. Energy Sources Part A: Recovery Utilization Environ Eff. 2023;45(2):3369–91. https://doi.org/10.1080/15567036.2023.2194855.

    Article  Google Scholar 

  169. Patel BV, Sarviya RM, Rajput SPS. Numerical investigations for the performance improvement of a tubular heat exchanger with anti-clockwise clockwise twisted tape inserts. Energy Sources Part A Recovery Utilization Environ Eff. 2022;44(2):4381–97. https://doi.org/10.1080/15567036.2022.2075993.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Maulana Azad National Institute of Technology for providing the facilities for research.

Author information

Authors and Affiliations

Authors

Contributions

VD: conceptualization, formal analysis, resources, data curation, writing–original draft, writing–review & editing, supervision. RMS: conceptualization, writing–original draft, supervision.

Corresponding author

Correspondence to Vipul Deshmukh.

Ethics declarations

Conflict of interest

Author(s) do not have any potential conflict of interest for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, V., Sarviya, R.M. Categorical review of experimental and numerical studies on twist tape inserts in the single-phase flow tubular heat exchanger. J Therm Anal Calorim 149, 2985–3025 (2024). https://doi.org/10.1007/s10973-024-12886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12886-2

Keywords

Navigation