Skip to main content
Log in

Effect of ethylbenzene proportion on thermal behavior in styrene polymerization: kinetics and the glass transition temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A rapid increase in viscosity during the polymerization process impacts the polymerization rate. To address this issue, ethylbenzene is often introduced into the polymerization system in order to reduce viscosity. The thermal characteristics of styrene–ethylbenzene polymerization have been identified using differential scanning calorimetry. The rate of heat generation significantly decreases as the proportion of ethylbenzene increases. The polymerization product mixtures were analyzed using gel permeation chromatography. Polymerization at low viscosity yields a higher proportion of low molecular mass polymers and a more uniform distribution of product chain lengths compared to polymerization at high viscosities. The glass transition temperature and the activation energy for viscous flow of the products were also determined. The apparent kinetics of styrene polymerization may be described using the “autocatalytic + Nth-order” model. Two stages of monomer conversion are apparent: polymerization reactions initiated by AIBN and thermally induced polymerization. Valuable insights into the polymerization process which can contribute to the optimization of industrial polymerization reactions have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Frequency factor (s−1)

C p :

Specific heat capacity (J g−1 K−1)

c :

Polymer concentration (mol L−1)

D :

The distribution coefficient

E :

The apparent activation energy of reaction (kJ mol−1)

E a :

The apparent activation energy of viscous flow (kJ mol−1)

f :

The free volume fraction

M n :

Number-average molecular mass (g mol−1)

M w :

Mass-average molar mass (g mol−1)

n :

Order of reaction

q :

Heat flow(mW)

t :

Time (s)

T :

Temperature (℃)

T i :

The initial polymerization temperature (℃)

T f :

The final polymerization temperature (℃)

T g :

Glass transition temperature (℃)

α :

Fraction of monomer conversion

v f :

Volume expansion coefficient

V :

The total volume

V 0 :

The occupied volume

\( \eta \) :

Viscosity (Pa s−1)

References

  1. Kiparissides C. Polymerization reactor modeling: a review of recent developments and future directions. Chem Eng Sci. 1996;51(10):1637–59. https://doi.org/10.1016/0009-2509(96)00024-3.

    Article  CAS  Google Scholar 

  2. Reichert KH, Moritz HU. Polymer reaction engineering-sciencedirect. Compr Polym Sci. 1989; (2nd Suppl):327–363.

  3. Moritz HU. Increase in viscosity and its influence on polymerization processes. Chem Eng Technol. 1989;12(1):71–87. https://doi.org/10.1002/ceat.270120112.

    Article  CAS  Google Scholar 

  4. Odian G. Principles of polymerization. 4th ed. Hoboken: Wiley; 2004.

    Book  Google Scholar 

  5. Liang XM, Jiang HC, Fang JL, Hua M, Pan XH, Jiang JC. Thermal analysis of the styrene bulk polymerization and characterization of polystyrene initiated by two methods. Chem Eng Commun. 2019;206(4):432–43. https://doi.org/10.1080/00986445.2018.1494586.

    Article  CAS  Google Scholar 

  6. Sivaraman S, Tauseef SM, Siddiqui NA. Investigative and probabilistic perspective of the accidental release of styrene: a case study in Vizag, India. Process Saf Environ Prot. 2022;158:55–69. https://doi.org/10.1016/j.psep.2021.11.034.

    Article  CAS  Google Scholar 

  7. Wang W, Fang JL, Pan XH, Hua M, Jiang JJ, Ni L, Jiang JC. Thermal research on the uncontrolled behavior of styrene bulk polymerization. J Loss Prev Process Ind. 2019;57:239–44. https://doi.org/10.1016/j.jlp.2018.11.020.

    Article  CAS  Google Scholar 

  8. Chen CC, Duh YS, Shu CM. Thermal polymerization of uninhibited styrene investigated by using microcalorimetry. J Hazard Mater. 2009;163(2–3):1385–90. https://doi.org/10.1016/j.jhazmat.2008.07.151.

    Article  CAS  PubMed  Google Scholar 

  9. Liao CC, Wu SH, Su TS, Shyu ML, Shu CM. Thermokinetics evaluation and simulations for the polymerization of styrene in the presence of various inhibitor concentrations. J Therm Anal Calorim. 2006;85:65–71. https://doi.org/10.1007/s10973-005-7359-3.

    Article  CAS  Google Scholar 

  10. Carswell TG, Hill DJT, Londero DI, O’Donnell JH, Pomery PJ, Winzor CL. Kinetic parameters for polymerization of methyl methacrylate at 60 ℃. Polymer. 1992;33(1):137–40. https://doi.org/10.1016/0032-3861(92)90573-F.

    Article  CAS  Google Scholar 

  11. Teil H, Page SA, Michaud V, Michaud V, Manson JAE. TTT-cure diagram of an anhydride-cured epoxy system including gelation, vitrification, curing kinetics model, and monitoring of the glass transition temperature. J Appl Polym Sci. 2004;93(4):1774–87. https://doi.org/10.1002/app.20631.

    Article  CAS  Google Scholar 

  12. Suzuki Y, Shinagawa Y, Kato E, Ryutaro M, Koji F, Akikazu M. Polymerization-induced vitrification and kinetic heterogenization at the onset of the Trommsdorff effect. Macromolecules. 2021;54(7):3293–303. https://doi.org/10.1021/acs.macromol.0c02260.

    Article  CAS  Google Scholar 

  13. Achilias DS. Investigation of the radical polymerization kinetics using DSC and mechanistic or isoconversional methods. J Therm Anal Calorim. 2014;116:1379–86. https://doi.org/10.1007/s10973-013-3633-y.

    Article  CAS  Google Scholar 

  14. Hesekamp D, Broecker HC, Pahl MH. Chemo-rheology of cross-linking polymers. Chem Eng Technol. 1998;21(2):149–53. https://doi.org/10.1002/(SICI)15214125(199802)21:2%3c149::AIDCEAT149%3e3.0.CO;2-P.

    Article  CAS  Google Scholar 

  15. Kelley FN, Bueche F. Viscosity and glass temperature relations for polymer-diluent systems. J Polym Sci. 2010;50(154):549–56. https://doi.org/10.1002/pol.1961.1205015421.

    Article  Google Scholar 

  16. Venditti RA, Gillham JK. A relationship between the glass transition temperature (Tg) and fractional conversion for thermosetting systems. J Polym Sci. 1997;64(1):3–14. https://doi.org/10.1002/(SICI)1097-4628(19970404)64:1%3C3::AID-APP1%3E3.0.CO;2-S.

    Article  CAS  Google Scholar 

  17. Garfield LJ, Petrie SE. Viscosity and glass-transition behavior of polymer—diluent systems1. J Phys Chem. 1964;68(7):1750–4. https://doi.org/10.1021/j100789a013.

    Article  CAS  Google Scholar 

  18. Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21(6):581–91. https://doi.org/10.1063/1.1699711.

    Article  CAS  Google Scholar 

  19. Smith LSA, Schmitz V. The effect of water on the glass transition temperature of poly (methyl methacrylate). Polymer. 1988;29(10):1871–8. https://doi.org/10.1016/0032-3861(88)90405-3.

    Article  CAS  Google Scholar 

  20. Baumgärtel M, Willenbacher N. The relaxation of concentrated polymer solutions. Rheol Acta. 1996;35:168–85. https://doi.org/10.1007/BF00396044.

    Article  Google Scholar 

  21. Wang J, Porter RS. On the viscosity-temperature behavior of polymer melts. Rheol acta. 1995;34:496–503. https://doi.org/10.1007/BF00396562.

    Article  CAS  Google Scholar 

  22. Rohindra DR, Lata RA, Coll RK. A simple experiment to determine the activation energy of the viscous flow of polymer solutions using a glass capillary viscometer. Eur J Phys. 2012;33(5):1457. https://doi.org/10.1088/0143-0807/33/5/1457.

    Article  Google Scholar 

  23. Glasstone S, Laidler KJ, Eyring H. The theory of rate processes: the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena. New York: McGraw-Hill Book Co.; 1941. https://doi.org/10.1142/S0218625X00000336.

    Book  Google Scholar 

  24. Doolittle AK. Studies in Newtonian flow. I. The dependence of the viscosity of liquids on temperature. J Appl Phys. 1951;22(8):1031–5. https://doi.org/10.1063/1.1700096.

    Article  CAS  Google Scholar 

  25. Doolittle AK. Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J Appl Phys. 1951;22(12):1471–5. https://doi.org/10.1063/1.1699894.

    Article  CAS  Google Scholar 

  26. Simha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. J Phys Chem. 1962;37(5):1003–7. https://doi.org/10.1063/1.1733201.

    Article  CAS  Google Scholar 

  27. Bueche F. Derivation of the WLF equation for the mobility of molecules in molten glasses. J Phys Chem. 1956;24(2):418–9. https://doi.org/10.1063/1.1742490.

    Article  CAS  Google Scholar 

  28. Toth G, Nagy D, Bata A, Belina K. Determination of polymer melts flow-activation energy a function of wide range shear rate. In: Journal of physics: conference series. IOP Publishing; 2018. vol. 1045, No (1), p. 012040. https://doi.org/10.1088/1742-6596/1045/1/012040.

  29. Vyazovkin S, Burnham AK, Favergeon L, Nobuyoshi K, Elena M, Luis APM, Nicolas S. ICTAC kinetics committee recommendations for analysis of multi-step kinetics. Thermochim acta. 2020;689:178597. https://doi.org/10.1016/j.tca.2020.178597.

    Article  CAS  Google Scholar 

  30. Wang K, Liu D, Xu S, Cai GW. Thermal history method for identification of autocatalytic decomposition reactions of energetic materials. J Loss Prev Process Ind. 2016;40:241–7. https://doi.org/10.1016/j.jlp.2016.01.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (22278226) and Postgraduate Research Practice Innovation Program of Jiangsu Province (KYCX-23_0417).

Author information

Authors and Affiliations

Authors

Contributions

HC was contributed conceptualization, methodology, visualization, data curation, and writing–original draft; CF was analyzed experiments and data analysis; JZ was responsible for methodology and software; WW analyzed methodology; SW performed experimental design; LC was done revision; ZG did validation; and Wanghua Chen was involved in resources and supervision.

Corresponding author

Correspondence to Liping Chen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Fang, C., Zhou, J. et al. Effect of ethylbenzene proportion on thermal behavior in styrene polymerization: kinetics and the glass transition temperature. J Therm Anal Calorim 149, 2929–2940 (2024). https://doi.org/10.1007/s10973-023-12876-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12876-w

Keywords

Navigation