Skip to main content
Log in

Effects of linear diamides derivative nucleating agent on the enhanced crystallization and rheological properties of biosourced and biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A linear diamides derivative (TMC-300) was incorporated into biosourced and biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) to investigate the influence of TMC-300 on the crystallization and rheological properties of P34HB. TMC-300 displayed an outstanding nucleating effect on P34HB. Adding 0.5 mass% TMC-300 increased the non-isothermal crystallization temperature by about 20 °C at rate of 5 °C min−1. Isothermal crystallization half-time at 95 °C obviously decreased from 20 min for neat P34HB to 2.5 min for P34HB/0.2TMC. Adding TMC-300 dramatically increased nucleation density and reduced spherulite size. Moreover, the rheological properties were obviously enhanced by adding TMC-300. The most intriguing result was that percolation network was formed at TMC-300 content between 0.5 and 1 mass%, which led to the transition of melt behaviors from liquid-like to solid-like. The unusual combination of nucleating effect and rheological properties promotion of TMC-300 on P34HB was in great potential for expanding practical application of biosourced and biodegradable P34HB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Grząbka-Zasadzińska A, Odalanowska M, Borysiak S. Thermal and mechanical properties of biodegradable composites with nanometric cellulose. J Therm Anal Calorim. 2019;138:4407–16.

    Google Scholar 

  2. Kunwar B, Cheng HN, Chandrashekaran SR, Sharma BK. Plastics to fuel: a review. Renew Sust Energy Rev. 2016;54:421–8.

    CAS  Google Scholar 

  3. Zhou X, Wu T, Wang X. Preparation and properties of biodegradable multi-block copolymer/graphite oxide composite phase change materials. J Therm Anal Calorim. 2021;143:3401–8.

    CAS  Google Scholar 

  4. Fenni SE, Wang J, Haddaoui N, Favis BD, Müller AJ, Cavallo D. Crystallization and self-nucleation of PLA, PBS and PCL in their immiscible binary and ternary blends. Thermochim Acta. 2019;677:117–30.

    CAS  Google Scholar 

  5. Jia K, Cao R, Hua G, Li P. Study of class I and class III polyhydroxyalkanoate (PHA) synthases with substrates containing a modified side chain. Biomacromolecules. 2016;17:1477–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Che X, Ye H, Chen G. Effects of uracil on crystallization and rheological property of poly(R-3-hydroxybutyrate-co-4-hydroxybutyrate). Compos Part A Appl Sci. 2018;109:141–50.

    CAS  Google Scholar 

  7. Barham PJ, Keller A, Otun EL, Holmes EL. Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci. 1984;19:2781–94.

    CAS  Google Scholar 

  8. Mangeon C, Michely L, Rios De Anda A, Thevenieau F, Renard E, Langlois V. Natural terpenes used as plasticizers for poly(3-hydroxybutyrate). ACS Sustain Chem Eng. 2018;6:16160–8.

    CAS  Google Scholar 

  9. Larsson M, Hetherington CJD, Wallenberg R, Jannasch P. Effect of hydrophobically modified graphene oxide on the properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymer. 2017;108:66–77.

    CAS  Google Scholar 

  10. Wee CY, Liow SS, Li Z, Wu Y, Loh XJ. New poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate] (P3HB4HB)-based thermogels. Macromol Chem Phys. 2017;218:1700196.

    Google Scholar 

  11. Wang L, Wang X, Zhu W, Chen Z, Pan J, Xu K. Effect of nucleation agents on the crystallization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate)(P3/4HB). J Appl Polym Sci. 2010;116:1116–23.

    CAS  Google Scholar 

  12. Xia MQ, Zhang YF. The relation between chemical structure of branched amide nucleating agents and nucleation effect in isotactic polypropylene. J Therm Anal Calorim. 2021;145:3053–66.

    CAS  Google Scholar 

  13. Pan P, Liang Z, Nakamura N, Miyagawa T, Inoue Y. Uracil as nucleating agent for bacterial poly[(3-Hydroxybutyrate)-co-(3-hydroxyhexanoate)] copolymers. Macromol Biosci. 2009;9:585–95.

    CAS  PubMed  Google Scholar 

  14. Vandewijngaarden J, Murariu M, Dubois P, Carleer R, Yperman J, D’Haen J, Peeters R, Buntinx M. Effect of ultrafine talc on crystallization and end-use properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Appl Polym Sci. 2016;133:43808.

    Google Scholar 

  15. Kai W, He Y, Inoue Y. Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym Int. 2005;54:780–9.

    CAS  Google Scholar 

  16. Xu C, Qiu Z. Crystallization behavior and thermal property of biodegradable poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposite. Polym Adv Technol. 2011;22:538–44.

    CAS  Google Scholar 

  17. Miao Y, Fang C, Shi D, Li Y, Wang Z. Coupling effects of boron nitride and heat treatment on crystallization, mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Polymer. 2022;252:124967.

    CAS  Google Scholar 

  18. Jing X, Qiu Q. Crystallization kinetics and thermal property of biodegradable poly(3-hydroxybutyrate)/graphene oxide nanocomposites. J Nanosci Nanotechnol. 2012;12:7314–21.

    CAS  PubMed  Google Scholar 

  19. El-Hadi AM. Investigation of the effect of nano-clay type on the non-isothermal crystallization kinetics and morphology of poly(3(R)-hydroxybutyrate) PHB/clay nanocomposites. Polym Bull. 2014;71:1449–70.

    Google Scholar 

  20. Xu PW, Cao Y, Lv P, Ma PM, Dong WF, Bai HY, Wang W, Du ML, Chen M. Enhanced crystallization kinetics of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanate) with structural optimization of oxalamide compounds as nucleators. Polym Degrad Stab. 2018;154:170–6.

    CAS  Google Scholar 

  21. Chen J, Tong W, Xu C, Wu D, Pan K. Insights into the nucleation role of cellulose crystals during crystallization of poly(β-hydroxybutyrate). Carbohydr Polym. 2015;134:508–15.

    CAS  PubMed  Google Scholar 

  22. Dong T, Mori T, Aoyama T, Inoue Y. Rapid crystallization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer accelerated by cyclodextrin-complex as nucleating agent. Carbohydr Polym. 2010;80:387–93.

    CAS  Google Scholar 

  23. El-Taweel SH. Effect of benzoic acid on the crystallization behavior of poly(3-hydroxybutyrate). J Macromol Sci Part B. 2013;52:1521–30.

    Google Scholar 

  24. Zhang Y, Zhou P, Mao J, Liu N. Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene. Polym Bull. 2019;76:1685–96.

    CAS  Google Scholar 

  25. Zhou P, Zhang Y, Lin X. Crystallization kinetics of isotactic polypropylene nucleated with octamethylenedicarboxylic dibenzoylhydrazide under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2019;136:749–57.

    CAS  Google Scholar 

  26. Zhan Y, Mao J. Effect of chemical structure of hydrazide compounds on nucleation effect in isotactic polypropylene. J Polym Res. 2019;26:277.

    Google Scholar 

  27. Liu S, He Y, Qu J. Manufacturing high-performance polylactide by constructing 3D network crystalline structure with adding self-assembly nucleator. Ind Eng Chem Res. 2022;61:4567–78.

    CAS  Google Scholar 

  28. Li L, Yang L, Tang J, Yang J, Li W, Zhou S, Ma H, Zhu H, Zhu Z. Modulated crystallization behavior of bacterial copolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): effect of a linear multiple amides derivative as a nucleator. J Macromol Sci A. 2020;57:439–50.

    CAS  Google Scholar 

  29. Tang Y, Wang Y, Chen S, Wang X. Fabrication of low-density poly(lactic acid) microcellular foam by self-assembly crystallization nucleating agent. Polym Degrad Stab. 2022;198:109891.

    CAS  Google Scholar 

  30. Jiang X, Luo S, Sun K, Chen X. Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett. 2007;4:245–51.

    Google Scholar 

  31. Zhou S, Sun Y, Ma H, Jia C, Sun X, Yang Y, Liu J, Yang J. Linear diamides derivative-nucleated biodegradable poly(ethylene succinate) polyester: crystallization kinetics and aggregated structure manipulated by hydrogen bond interaction. J Polym Environ. 2021;29:3605–17.

    CAS  Google Scholar 

  32. Bai H, Zhang W, Deng H, Zhang Q, Fu Q. Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules. 2011;44:1233–7.

    CAS  Google Scholar 

  33. Luo R, Xu K, Chen G. Study of miscibility, crystallization, mechanical properties, and thermal stability of blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). J Appl Polym Sci. 2007;105:3402–8.

    CAS  Google Scholar 

  34. Li J, Qiu Z. Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Carbohydr Polym. 2019;205:211–6.

    CAS  PubMed  Google Scholar 

  35. Avrami M. Kinetics of phase change. II transformation: time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    CAS  Google Scholar 

  36. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    CAS  Google Scholar 

  37. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    CAS  Google Scholar 

  38. Qiu Z, Li Z. Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent. Ind Eng Chem Res. 2011;50:12299–303.

    CAS  Google Scholar 

  39. Dong T, Kai W, Pan P, Cao A, Inoue Y. Effects of host guest stoichiometry of a-cyclodextrin aliphatic polyester inclusion complexes and molecular weight of guest polymer on the crystallization behavior of aliphatic polyesters. Macromolecules. 2007;40:7244–51.

    CAS  Google Scholar 

  40. Pan H, Qiu Q. Biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules. 2010;43:1499–506.

    CAS  Google Scholar 

  41. Li Y, Huang H, Wang Z, He T. Tuning radial lamellar packing and orientation into diverse ring-banded spherulites: effects of structural feature and crystallization condition. Macromolecules. 2014;47:1783–92.

    CAS  Google Scholar 

  42. Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules. 1989;22:694–7.

    CAS  Google Scholar 

  43. Zhao H, Bian Y, Li Y, Dong Q, Han C, Dong L. Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J Mater Chem A. 2014;2:8881–92.

    CAS  Google Scholar 

  44. Wen X, Lu X, Peng Q, Zhu F, Zheng N. Crystallization behaviors and morphology of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). J Therm Anal Calorim. 2012;109:1–8.

    Google Scholar 

  45. Arrigo R, Malucelli G. Rheological behavior of polymer/carbon nanotube composites: an overview. Materials. 2020;13:2771.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Han CD, Kim JK. On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer. 1993;34:2533–9.

    CAS  Google Scholar 

  47. Han CD, Kim J. Rheological technique for determining the order-disorder transition of block copolymers. J Polym Sci B Polym Phys. 1987;25:1741–64.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Research Project of Education Department of Jilin Province (JJKH20230325KJ).

Author information

Authors and Affiliations

Authors

Contributions

YL contributed to data curation, writing—original draft, investigation, visualization, resources, project administration, methodology, and conceptualization. CH contributed to data curation, investigation, writing—review and editing, and visualization. DL contributed to data curation, formal analysis, supervision, and conceptualization. HC contributed to software and data curation. LX contributed to formal analysis and conceptualization. BW contributed to data curation and formal analysis.

Corresponding author

Correspondence to Changyu Han.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Han, C., Li, D. et al. Effects of linear diamides derivative nucleating agent on the enhanced crystallization and rheological properties of biosourced and biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). J Therm Anal Calorim 149, 1003–1014 (2024). https://doi.org/10.1007/s10973-023-12790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12790-1

Keywords

Navigation