Skip to main content
Log in

Differential thermal measurements of phase transitions at high pressures and temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal measurements of high-pressure transitions in metals can provide thermodynamic insight into the properties of the high-pressure high-temperature phases and their transitions. However, these measurements have been essentially limited to a few large high-pressure facilities. An innovative pressure cell, designed for sensitive differential thermal analysis (DTA) measurements at elevated temperatures (300–1000 K) and high pressures (0–6 GPa) implemented in a ‘Paris–Edinburgh’ tabletop press, is presented. Differential measurements enable capture of small thermal signals, e.g., typical solid–solid transitions. The new cell’s capability is demonstrated via thermal measurements of transitions across the phase diagrams of indium, tin, and antimony. The melting transitions of these metals were identified based on the DTA measurements, together with the subtler transitions in the solid phases. The enthalpy of transition between solid phases was found to be significantly smaller than upon melting. Hence, the sensitivity of the experimental design is demonstrated. By consolidating the transitions obtained from the DTA curves during isobaric measurements, the high-pressure phase diagrams of the elements were reconstructed. For comparison, the high-pressure phase diagrams of In and Sb were determined by electrical resistance measurements. The phase diagrams obtained by high-pressure DTA measurements were found to agree very well with these and with previous experimental determinations using thermal and other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schouten JA. Recent advances in the study of high-pressure binary systems. J Phys Condens Matter. 1995;7:469–82. https://doi.org/10.1088/0953-8984/7/3/004.

    Article  CAS  Google Scholar 

  2. Mc Mahon MI, Nelmes RJ. High-pressure structures and phase transformations in elemental metals. Chem Soc Rev. 2006;35:943–63. https://doi.org/10.1039/b517777b.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Wang Y, Lv J, Ma Y. Materials discovery at high pressures. Nat Rev Mater. 2017;2:17005. https://doi.org/10.1038/natrevmats.2017.5.

    Article  CAS  Google Scholar 

  4. Manjón FJ, Errandonea D. Pressure-induced structural phase transitions in materials and earth sciences. Phys Status Solidi. 2009;246:9–31. https://doi.org/10.1002/pssb.200844238.

    Article  CAS  Google Scholar 

  5. Makov G, Emuna M, Yahel E, Kim HG, Lee J. Effect of pressure on the interactions and phase diagrams of binary alloys. Comput Mater Sci. 2019;169: 109103. https://doi.org/10.1016/j.commatsci.2019.109103.

    Article  CAS  Google Scholar 

  6. Baker J, Kumar R, Park C, Kenney-Benson C, Cornelius A, Velisavljevic N. High-pressure Seebeck coefficients and thermoelectric behaviors of Bi and PbTe measured using a Paris–Edinburgh cell. J Synchrotron Radiat. 2016;23:1368–78. https://doi.org/10.1107/S1600577516014521.

    Article  CAS  PubMed  Google Scholar 

  7. Emuna M, Greenberg Y, Hevroni R, Korover I, Yahel E, Makov G. Phase diagrams of binary alloys under pressure. J Alloys Compd. 2016;687:360–9. https://doi.org/10.1016/j.jallcom.2016.06.158.

    Article  CAS  Google Scholar 

  8. Hu J, Zhou X, Dai C, Tan H, Li J. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements. J Appl Phys. 2008. https://doi.org/10.1063/1.3003325.

    Article  Google Scholar 

  9. Loveday J. High-pressure physics. Chapman and Hall/CRC; 2012.

  10. Principi E, Di CA. Development of an experimental set-up for electroresistance measurements of materials under high pressure and temperature. Meas Sci Technol. 2008;19: 095701. https://doi.org/10.1088/0957-0233/19/9/095701.

    Article  CAS  Google Scholar 

  11. Gao C, Han Y, Ma Y, White A, Liu H, Luo J, Li M, He C, Hao A, Huang X, Pan Y, Zou G. Accurate measurements of high pressure resistivity in a diamond anvil cell. Rev Sci Instrum. 2005;76: 083912. https://doi.org/10.1063/1.2006347.

    Article  CAS  Google Scholar 

  12. Shen G, Mao HK. High-pressure studies with x-rays using diamond anvil cells. Rep Prog Phys. 2017;80: 016101. https://doi.org/10.1088/1361-6633/80/1/016101.

    Article  CAS  PubMed  Google Scholar 

  13. Drewitt JWE. Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. J Phys Condens Matter. 2021;33: 503004. https://doi.org/10.1088/1361-648X/ac2865.

    Article  CAS  Google Scholar 

  14. Gomi H, Hirose K. Electrical resistivity and thermal conductivity of hcp Fe–Ni alloys under high pressure: implications for thermal convection in the Earth’s core. Phys Earth Planet Inter. 2014;247:2–10. https://doi.org/10.1016/j.pepi.2015.04.003.

    Article  CAS  Google Scholar 

  15. Bassett WA. Diamond anvil cell, 50th birthday. High Press Res. 2009;29:163–86. https://doi.org/10.1080/08957950802597239.

    Article  CAS  Google Scholar 

  16. Silber RE, Secco RA, Yong W. Constant electrical resistivity of Ni along the melting boundary up to 9 GPa. J Geophys Res Solid Earth. 2017;122:5064–81. https://doi.org/10.1002/2017JB014259.

    Article  CAS  Google Scholar 

  17. Lazicki A, Fei Y, Hemley RJ. High-pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Commun. 2010;150:625–7. https://doi.org/10.1016/j.ssc.2009.12.029.

    Article  CAS  Google Scholar 

  18. Klotz S. Techniques in high pressure neutron scattering. CRC Press; 2012.

    Book  Google Scholar 

  19. Morard G, Mezouar M, Rey N, Poloni R, Merlen A, Le Floch S, Toulemonde P, Pascarelli S, San-Miguel A, Sanloup C, Fiquet G. Optimization of Paris–Edinburgh press cell assemblies for in situ monochromatic X-ray diffraction and X-ray absorption. High Press Res. 2007;27:223–33. https://doi.org/10.1080/08957950601183553.

    Article  CAS  Google Scholar 

  20. Jayaraman A, Klement W, Newton RC, Kennedy GC. Fusion curves and polymorphic transitions of the group III elements—aluminum, gallium, indium and thallium—at high pressures. J Phys Chem Solids. 1963;24:7–18. https://doi.org/10.1016/0022-3697(63)90036-2.

    Article  Google Scholar 

  21. Bundy FP. Effect of pressure on emf of thermocouples. J Appl Phys. 1961;32:483–8. https://doi.org/10.1063/1.1736029.

    Article  CAS  Google Scholar 

  22. Hanneman RE, Strong HM. Pressure dependence of the emf of thermocouples. J Appl Phys. 1966;37:612–4. https://doi.org/10.1063/1.1708224.

    Article  Google Scholar 

  23. Hanneman RE, Strong HM. Pressure dependence of the emf of thermocouples to 1300 °C and 50 kbar. J Appl Phys. 1965;36:523–8. https://doi.org/10.1063/1.1714023.

    Article  CAS  Google Scholar 

  24. Nishihara Y, Fuke K, Tange Y, Higo Y. Determination of pressure effect on thermocouple electromotive force using multi-anvil apparatus. High Press Res. 2016;36:121–39. https://doi.org/10.1080/08957959.2016.1169275.

    Article  CAS  Google Scholar 

  25. Nishihara Y, Matsukage KN, Karato SI. Effects of metal protection coils on thermocouple EMF in multi-anvil high-pressure experiments. Am Mineral. 2006;91:111–4. https://doi.org/10.2138/am.2006.1883.

    Article  CAS  Google Scholar 

  26. Li J, Hadidiacos C, Mao HK, Fei Y, Hemley RJ. Behavior of thermocouples under high pressure in a multi-anvil apparatus. High Press Res. 2003;23:389–401. https://doi.org/10.1080/0895795031000088269.

    Article  CAS  Google Scholar 

  27. Kelman LR, Wilkinson WD, Yaggee FL. Resistance Of materials to attack by liquid metals. U.S. Atomic Energy Commission. Technical Information Service. United States, Argonne, IL (United States). 1950.

  28. Yin L, Murray BT, Su S, Sun Y, Efraim Y, Taitelbaum H, Singler TJ. Reactive wetting in metal–metal systems. J Phys Condens Matter. 2009;21: 464130. https://doi.org/10.1088/0953-8984/21/46/464130.

    Article  CAS  PubMed  Google Scholar 

  29. Matityahu S, Emuna M, Yahel E, Makov G, Greenberg Y. Novel experimental design for high pressure-high temperature electrical resistance measurements in a “Paris–Edinburgh” large volume press. Rev Sci Instrum. 2015;86: 043902. https://doi.org/10.1063/1.4918606.

    Article  CAS  PubMed  Google Scholar 

  30. Simpson A, Stuckes AD. The thermal conductivity of highly oriented pyrolytic boron nitride. J Phys C Solid State Phys. 1971;4:1710–8. https://doi.org/10.1088/0022-3719/4/13/021.

    Article  CAS  Google Scholar 

  31. Jiang P, Qian X, Yang R, Lindsay L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys Rev Mater. 2018;2: 064005. https://doi.org/10.1103/PhysRevMaterials.2.064005.

    Article  CAS  Google Scholar 

  32. Brown ME. Handbook of thermal analysis and calorimetry. In: Handbook of thermal analysis and calorimetry. 1998. p 15.

  33. Klement W, Jayaraman A, Kennedy GC. Phase diagrams of arsenic, antimony, and bismuth at pressures up to 70 kbars. Phys Rev. 1963;131:632–7. https://doi.org/10.1103/PhysRev.131.632.

    Article  CAS  Google Scholar 

  34. Jayaraman A, Klement W, Kennedy GC. Solid-solid transitions in titanium and zirconium at high pressures. Phys Rev. 1963;131:644–9. https://doi.org/10.1103/PhysRev.131.644.

    Article  CAS  Google Scholar 

  35. Goujon C, Legendre M, Plaindoux P, Prat A, Bruyère R. A new differential thermal analysis setup for measuring high pressure phase transitions. High Press Res. 2011;31:375–87. https://doi.org/10.1080/08957959.2011.598868.

    Article  CAS  Google Scholar 

  36. Zhao J-C. Methods for phase diagram determination. 1st ed. Oxford: Elsevier; 2007.

    Google Scholar 

  37. Boettinger WJ, Kattner UR, Moon K-W, Perepezko JH. DTA and heat-flux DSC measurements of alloy melting and freezing. In: Methods for phase diagram determination. Elsevier; 2007. p. 151–221.

    Chapter  Google Scholar 

  38. Decker DL, Bassett WA, Merrill L, Hall HT, Barnett JD. High pressure calibration: a critical review. J Phys Chem Ref Data. 1972;1:773–836. https://doi.org/10.1063/1.3253105.

    Article  Google Scholar 

  39. Dean Barnett J, Bennion RB, Tracy Hall H. X-ray diffraction studies on tin at high pressure and high temperature. Science. 1963;141:1041–2. https://doi.org/10.1126/science.141.3585.1041.

    Article  Google Scholar 

  40. Coleman AL, Stevenson M, McMahon MI, Macleod SG. Phase diagram of antimony up to 31 GPa and 835 K. Phys Rev B. 2018;97: 144107. https://doi.org/10.1103/PhysRevB.97.144107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Pazy Foundation.

Author information

Authors and Affiliations

Authors

Contributions

YG, EY, and GM were involved in conceptualization, writing—review and editing, and funding acquisition; IK, YG, and EY were involved in methodology; IK, SBS, and EY helped in formal analysis and investigation; IK and SBS helped in writing—original draft preparation; GM contributed to resources; and EY and GM were involved in supervision.

Corresponding author

Correspondence to Guy Makov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirshon, Y., Ben Shalom, S., Makov, G. et al. Differential thermal measurements of phase transitions at high pressures and temperatures. J Therm Anal Calorim 149, 1037–1045 (2024). https://doi.org/10.1007/s10973-023-12776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12776-z

Keywords

Navigation