Skip to main content
Log in

A novel ant lion optimizer-salp swarm algorithm for inverse heat conduction problem in pipeline fluid temperature recognition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the inverse heat transfer problem is studied in a two-dimensional cross-section of a horizontal pipe to estimate the unknown time-varying fluid temperature close to the inner wall of the pipe. The uneven mixing of fluids at different temperatures leads to temperature fluctuations in the inner wall of the pipeline, which could result in wall stress changes and structural thermal fatigue. An inversion algorithm based on the ant lion optimizer-salp swarm algorithm (ALO-SSA) is proposed. The temperature data are utilized as input data for the inverse heat transfer problem (IHCP). The fluid temperature fluctuations are most dramatic near the inner wall at 0° and 30°. ALO-SSA algorithm exhibits significantly lower average error compared to the other two contrasting algorithms, with an estimated average error of 0.0395 at 0° and 0.0413 at 30° for temperature estimation. Experimental analysis showed that the algorithm has good speed and accuracy for solving similar inverse heat transfer problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

T :

Temperature

r :

Radius

θ :

Angle

τ :

Time

∆τ :

Time step

ρ :

Density

c :

Specific heat capacity

λ :

Thermal conductivity

n :

Normal vector

h f,in :

Inner convection heat transfer coefficient

h f,out :

Outer convection heat transfer coefficient

T f,in :

Fluid temperature

T f,out :

Ambient temperature

T w :

Wall temperature

T 0 :

Initial temperature of the pipe

J :

Wall temperature

T Est,m,n :

Estimated temperature

T Exp,m,n :

Experimental temperature

N :

Population size

D :

Dimension

X :

Population position of ant

Fitness (x):

Fitness function

t :

Current number of iterations

i :

The ith individual

I :

Proportion of traps

X_AL:

Population position of ant lion

X best :

Optimal individual

μ :

Chaos parameter

ub:

Upper bound

lb:

Lower bound

I_real:

Real iteration

I_current:

Current iteration

I_factor:

Iteration factor

I_MAX:

Max iteration

F j :

Optimal position

c 1 c 2 c 3 :

Random numbers

j :

jth individual

IHCP:

Inverse heat conduction problem

DHCP:

Direct heat conduction problem

ALO:

Ant lion optimizer

SSA:

Salp swarm algorithm

References

  1. Jo B, Erkan N, Takahashi S, Song D, Sagawa W, Okamoto K. Thermal stratification in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants. Nucl Eng Des. 2016;305:39–50.

    Article  CAS  Google Scholar 

  2. Kim JH, Roidt RM, Deardorff AF. Thermal stratification and reactor piping integrity. Nucl Eng Des. 1993;139(1):83–95.

    Article  CAS  Google Scholar 

  3. Ali MY, Wu G, Liu S, Jin M, Zhao Z, Wu Y. CFD Analysis of thermal stratification under PLOFA transient in CLEAR-S. Prog Nucl Energy. 2019;115:21–9.

    Article  CAS  Google Scholar 

  4. Boros I, Aszodi A. Analysis of thermal stratification in the primary circuit of a VVER-440 reactor with the CFX code. Nucl Eng Des. 2008;238(3):453–9.

    Article  CAS  Google Scholar 

  5. Wang S, Ni R. Solving of two-dimensional unsteady-state heat-transfer inverse problem using finite difference method and model prediction control method. Complexity. 2019;2019(7):1–12.

    CAS  Google Scholar 

  6. Lu T, Liu B, Jiang PX. A two-dimensional inverse heat conduction problem in estimating the fluid temperature in a pipeline. Appl Therm Eng. 2010;30(13):1574–9.

    Article  Google Scholar 

  7. Lu T, Liu B, Jiang PX. Inverse estimation of the inner wall temperature fluctuations in a pipe elbow. Appl Therm Eng. 2011;31(11–12):1976–82.

    Article  Google Scholar 

  8. Han WW, Chen HB, Lu T. Estimation of the time-dependent convective boundary condition in a horizontal pipe with thermal stratification based on inverse heat conduction problem. Int J Heat Mass Transf. 2019;132:723–30.

    Article  Google Scholar 

  9. Wikström P, Blasiak W, Berntsson F. Estimation of the transient surface temperature and heat flux of a steel slab using an inverse method. Appl Therm Eng. 2007;27(14–15):2463–72. https://doi.org/10.1016/j.applthermaleng.2007.02.005.

    Article  Google Scholar 

  10. Lu T, Han WW, Jiang PX, Zhu YH, Wu J, Liu CL. A two-dimensional inverse heat conduction problem for simultaneous estimation of heat convection coefficient, fluid temperature and wall temperature on the inner wall of a pipeline. Prog Nucl Energy. 2015;81(may):161–8.

    Article  Google Scholar 

  11. Xie T, He Y-L, Tong Z-X, Yan W-X, Xie X-Q. An inverse analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material. Appl Therm Eng. 2015;87:214–24. https://doi.org/10.1016/j.applthermaleng.2015.05.008.

    Article  CAS  Google Scholar 

  12. Cebula A, Taler J. Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points. Appl Therm Eng. 2014;63(1):158–69.

    Article  Google Scholar 

  13. Qi H, Ruan LM, Zhang HC, Wang YM, Tan HP. Inverse radiation analysis of a one-dimensional participating slab by stochastic particle swarm optimizer algorithm. Int J Therm Sci. 2007;46(7):649–61.

    Article  CAS  Google Scholar 

  14. Czel B, Grof G. Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes. Int J Heat Mass Transf. 2012;55(15–16):4254–63.

    Article  Google Scholar 

  15. Yang YC, Chen WL. A nonlinear inverse problem in estimating the heat flux of the disc in a disc brake system. Appl Therm Eng. 2011;31(14–15):2439–48.

    Article  Google Scholar 

  16. Liu FB. Particle Swarm Optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux. Int J Heat Mass Transf. 2012;55(7–8):2062–8.

    Article  CAS  Google Scholar 

  17. Yang Z, Liu M, Luo X. First-optimize-then-discretize strategy for the parabolic PDE constrained optimization problem with application to the reheating furnace. IEEE Access. 2021;9:90283–94.

    Article  Google Scholar 

  18. Han W, Lu T, Chen H. Sensitivity analysis about transient three-dimensional IHCP with multi-parameters in an elbow pipe with thermal stratification. IEEE Access. 2019;7:146791–800.

    Article  Google Scholar 

  19. Cui M, Duan W, Gao X. A new inverse analysis method based on a relaxation factor optimization technique for solving transient nonlinear inverse heat conduction problems. Int J Heat Mass Transf. 2015;90:491–8.

    Article  Google Scholar 

  20. Cui M, Yang K, Xu X-l, Shengdong W, Gao X. A modified Levenberg Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems. Int J Heat Mass Transf. 2016;97:908–16.

    Article  Google Scholar 

  21. Wang S, Deng Y, Sun X. Solving of two-dimensional unsteady inverse heat conduction problems based on boundary element method and sequential function specification method. Complexity. 2018;2018:1–11.

    Google Scholar 

  22. Wang S, Zhang L, Sun X, Jia H. Solution to two-dimensional steady inverse heat transfer problems with interior heat source based on the conjugate gradient method. Math Probl Eng. 2017;2017:1–9.

    Google Scholar 

  23. Wan S, Wang K, Xu P, Huang Y. Numerical and experimental verification of the single neural adaptive PID real-time inverse method for solving inverse heat conduction problems. Int J Heat Mass Transf. 2022;189:122657.

    Article  Google Scholar 

  24. Oommen V, Srinivasan B. Solving inverse heat transfer problems without surrogate models: a fast, data-sparse, physics informed neural network approach. J Comput Inf Sci Eng. 2022;4:22.

    Google Scholar 

  25. Oliveira AVS, Avrit A, Gradeck M. Thermocouple response time estimation and temperature signal correction for an accurate heat flux calculation in inverse heat conduction problems. Int J Heat Mass Transf. 2022;185:122398.

    Article  CAS  Google Scholar 

  26. Sajedi R, Faraji J, Kowsary F. A new damping strategy of Levenberg-Marquardt algorithm with a fuzzy method for inverse heat transfer problem parameter estimation. Int Commun Heat Mass Transf. 2021;126(2):105433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guili Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Song, J., Peng, G. et al. A novel ant lion optimizer-salp swarm algorithm for inverse heat conduction problem in pipeline fluid temperature recognition. J Therm Anal Calorim 149, 173–185 (2024). https://doi.org/10.1007/s10973-023-12743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12743-8

Keywords

Navigation