Skip to main content
Log in

Recovery of styrene from waste wind turbine blades (fiberglass/polyester resin composites) using pyrolysis treatment and its kinetic behavior

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In light of the current economic, environmental and geopolitical challenges related to securing and diversifying energy sources, wind energy has taken a great deal of attention as a sustainable technology for the production of clean energy. However, waste wind turbine blades (WTBs) present a significant environmental challenge that requires an effective recycling solution, especially fiberglass-reinforced polyester resin composite which accounts for a large part of WTBs with high toxicity. Within this context, this research aims to recover styrene compound from WTBs (fiberglass/polyester resin) using pyrolysis process. Pyrolysis experiments were carried out using a thermogravimetry (TG) on WTBs and their components, including resin and fiber. The formation of pyrolysis vapors is observed using TG-FTIR and GC/Ms measurements. The pyrolysis kinetics of each configuration was studied under different heating rates (5–30 °C min−1) using various linear and nonlinear isoconversional modeling techniques. Also, the thermal degradation phases of WTBs were mathematically simulated using the DAEM and IPR models. In addition, the thermodynamic coefficients (enthalpy, Gibbs free energy, and entropy) were determined. TG analysis revealed that the main decomposition reaction site for WTBs was between 350–490 °C, while the TG-FTIR results showed that (carbonyl (C = O)) was the main functional group in the released pyrolysis vapor. Whereas the GC/MS analysis showed that the released vapor was very rich in styrene compound up to 62% and the maximum recovery rate was obtained at 30 °C min−1 with an increase of 27% compared to that obtained at 5 °C min−1. Regarding kinetic analysis, the results showed that the average activation energies were 182 kJ mol−1 (KAS), 228 kJ mol−1 (FWO), 224 kJ mol−1 (Friedman), and 160 kJ mol−1 (Vyazovkin and Cai) with R2 > 0.94. Based on these results, pyrolysis treatment can be used to extract styrene from WTBs with high recovery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barrows SE, Homer JS, Orrell AC. Valuing wind as a distributed energy resource: a literature review. Renew Sustain Energy Rev. 2021. https://doi.org/10.1016/j.rser.2021.111678.

    Article  Google Scholar 

  2. Su CW, Khan K, Umar M, Zhang W. Does renewable energy redefine geopolitical risks? Energy Policy. 2021. https://doi.org/10.1016/j.enpol.2021.112566.

    Article  Google Scholar 

  3. Battaglia V, De Luca G, Fabozzi S, Lund H, Vanoli L. Integrated energy planning to meet 2050 European targets: a Southern Italian region case study. Energ Strat Rev. 2022. https://doi.org/10.1016/j.esr.2022.100844.

    Article  Google Scholar 

  4. Nasser M, Megahed TF, Ookawara S, Hassan H. Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic. Energy Convers Manage. 2022. https://doi.org/10.1016/j.enconman.2022.115870.

    Article  Google Scholar 

  5. Lichtenegger G, Rentizelas AA, Trivyza N, Siegl S. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Manag. 2020. https://doi.org/10.1016/j.wasman.2020.03.018.

    Article  PubMed  Google Scholar 

  6. Beauson J, Laurent A, Rudolph DP, Pagh Jensen J. The complex end-of-life of wind turbine blades: a review of the European context. Renew Sustain Energy Rev. 2022. https://doi.org/10.1016/j.rser.2021.111847.

    Article  Google Scholar 

  7. Chen Y, Cai G, Zheng L, Zhang Y, Qi X, Ke S, Gao L, Bai R, Liu G. Modeling waste generation and end-of-life management of wind power development in Guangdong, China until 2050. Resour Conserv Recycl. 2021. https://doi.org/10.1016/j.resconrec.2021.105533.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Heng H, Meng F, McKechnie J. Wind turbine blade wastes and the environmental impacts in Canada. Waste Manage. 2021. https://doi.org/10.1016/j.wasman.2021.07.032.

    Article  Google Scholar 

  9. Morini AA, Ribeiro MJ, Hotza D. Carbon footprint and embodied energy of a wind turbine blade—a case study. Int J Life Cycle Assess. 2021. https://doi.org/10.1007/s11367-021-01907-z.

    Article  Google Scholar 

  10. Liu P, Barlow CY. Wind turbine blade waste in 2050. Waste Manage. 2017. https://doi.org/10.1016/j.wasman.2017.02.007.

    Article  Google Scholar 

  11. Fonte R, Xydis G. Wind turbine blade recycling: An evaluation of the European market potential for recycled composite materials. J Environ Manage. 2021. https://doi.org/10.1016/j.jenvman.2021.112269.

    Article  PubMed  Google Scholar 

  12. Liu P, Meng F, Barlow CY. Wind turbine blade end-of-life options: An economic comparison. Resour Conser Recycl. 2022;2022:106202. https://doi.org/10.1016/j.resconrec.2022.106202.

    Article  Google Scholar 

  13. Jani HK, Kachhwaha SS, Nagababu G, Das A. A brief review on recycling and reuse of wind turbine blade materials. Mater Today Proc. 2022;62:7124–30.

    Article  CAS  Google Scholar 

  14. Rani M, Choudhary P, Krishnan V, Zafar S. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos B Eng. 2021. https://doi.org/10.1016/j.compositesb.2021.108768.

    Article  Google Scholar 

  15. Baturkin D, Hisseine OA, Masmoudi R, Tagnit-Hamou A, Massicotte L. Valorization of recycled FRP materials from wind turbine blades in concrete. Resour Conser Recycl. 2021;174:105807.

    Article  CAS  Google Scholar 

  16. Pender K, Yang L. Regenerating performance of glass fibre recycled from wind turbine blade. Compos B Eng. 2020. https://doi.org/10.1016/j.compositesb.2020.108230.

    Article  Google Scholar 

  17. Kulatunga SD, Jayamani E, Soon KH, Prashanth PH, Jeyanthi S, Sankar RR. Comparative study of static and fatigue performances of wind turbine blade materials. Mater Today Proc. 2022;62:6848–53.

    Article  Google Scholar 

  18. Schamel E, Wehnert G, Schlachter H, Söthje D. Chemical recycling of carbon fiber reinforced epoxy composites using mild conditions. Chem Ing Tech. 2021. https://doi.org/10.1002/cite.202100048.

    Article  Google Scholar 

  19. Tian Z-S, Wang Y-q, Hou X-L. Review of chemical recycling and reuse of carbon fiber reinforced epoxy resin composites. New Carbon Mater. 2022. https://doi.org/10.1016/S1872-5805(22)60652-8.

    Article  Google Scholar 

  20. Zhang W, Jia J, Ding Y, Jiang G, Sun L, Kaihua Lu. Effects of heating rate on thermal degradation behavior and kinetics of representative thermoplastic wastes. J Environ Manage. 2022. https://doi.org/10.1016/j.jenvman.2022.115071.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jensen JP, Skelton K. Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy. Renew Sustain Energy Rev. 2018. https://doi.org/10.1016/j.rser.2018.08.041.

    Article  Google Scholar 

  22. Hu J, Danish M, Lou Z, Zhou P, Zhu N, Yuan H, Qian P. Effectiveness of wind turbine blades waste combined with the sewage sludge for enriched carbon preparation through the co-pyrolysis processes. J Clean Prod. 2018. https://doi.org/10.1016/j.jclepro.2017.10.166.

    Article  Google Scholar 

  23. Khalid MY, Arif ZU, Hossain M, Umer R. Recycling of wind turbine blade through modern recycling technologies: Road to zero waste. Renewable Energy Focus. 2023;56:242–562.

    Google Scholar 

  24. Murray RE, Beach R, Barnes D, Snowberg D, Berry D, Rooney S, Jenks M, Gage B, Boro T, Wallen S, Hughes S. Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade. Renew Energy. 2021. https://doi.org/10.1016/j.renene.2020.10.040.

    Article  Google Scholar 

  25. Eimontas J, Striūgas N, Praspaliauskas M, Abdelnaby MA. Pyrolysis kinetic behaviour of glass fibre-reinforced epoxy resin composites using linear and nonlinear isoconversional methods. Polymers. 2021. https://doi.org/10.3390/polym13101543.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Subadra SP, Eimontas J, Striūgas N, Abdelnaby MA. Thermal degradation and pyrolysis kinetic behaviour of glass fibre-reinforced thermoplastic resin by TG-FTIR, Py-GC/MS, linear and nonlinear isoconversional models. J Market Res. 2021. https://doi.org/10.1016/j.jmrt.2021.11.011.

    Article  Google Scholar 

  27. Striūgas N, Eimontas J, Abdelnaby MA. Influence of carbon black filler on pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of glass fibre reinforced polymer composites. Energy. 2021. https://doi.org/10.1016/j.energy.2021.121167.

    Article  Google Scholar 

  28. Yousef S, Eimontas J, Striūgas N, Abdelnaby MA. Thermal decomposition of CNTs and graphene-reinforced glass fibers/epoxy and their kinetics. Biomass Convers Biorefinery. 2022;23:1–21.

    Google Scholar 

  29. Yousef S, Kiminaitė I, Eimontas J, Striūgas N, Abdelnaby MA. Catalytic pyrolysis kinetic behaviour of glass fibre-reinforced epoxy resin composites over ZSM-5 zeolite catalyst. Fuel. 2022. https://doi.org/10.1016/j.fuel.2022.123235.

    Article  Google Scholar 

  30. Kiminaitė I, Eimontas J, Striūgas N. Mohammed Ali Abdelnaby, Recovery of phenol and acetic acid from glass fibre reinforced thermoplastic resin using catalytic pyrolysis process on ZSM-5 zeolite catalyst and its kinetic behaviour. Thermochim Acta. 2022. https://doi.org/10.1016/j.tca.2022.179293.

    Article  Google Scholar 

  31. Eimontas J, Striūgas N, et al. Catalytic pyrolysis and kinetic study of glass fibre-reinforced epoxy resin over CNTs, graphene and carbon black particles/ZSM-5 zeolite hybrid catalysts. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-022-11776-9.

    Article  Google Scholar 

  32. Rocha IBCM, Raijmaekers S, Nijssen RPL, van der Meer FP, Sluys LJ. Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades. Compos Struct. 2017. https://doi.org/10.1016/j.compstruct.2017.04.028.

    Article  Google Scholar 

  33. Bech JI, Johansen NF-J, Madsen MB, Hannesdóttir Á, Hasager CB. Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades. SSRN Electron J. 2022. https://doi.org/10.2139/ssrn.4011160.

    Article  Google Scholar 

  34. Chen W, Ye M, Li M, Xi B, Hou J, Qi X, Zhang J, Wei Y, Meng F. Characteristics, kinetics and product distribution on pyrolysis process for waste wind turbine blades. J Anal Appl Pyrol. 2023. https://doi.org/10.1016/j.jaap.2023.105859.

    Article  Google Scholar 

  35. Ming-xin Xu, Ji H-W, Ya-chang Wu, Di J-y, Meng X-x, Jiang H, Qiang Lu. The pyrolysis of end-of-life wind turbine blades under different atmospheres and their effects on the recovered glass fibers. Compos B Eng. 2023. https://doi.org/10.1016/j.compositesb.2022.110493.

    Article  Google Scholar 

  36. Ge L, Li Xi, Feng H, Chunyao Xu, Yanning Lu, Chen Bo, Li D, Chang Xu. Analysis of the pyrolysis process, kinetics and products of the base components of waste wind turbine blades (epoxy resin and carbon fiber). J Anal Appl Pyrol. 2023. https://doi.org/10.1016/j.jaap.2023.105919.

    Article  Google Scholar 

  37. Ge L, Chunyao Xu, Feng H, Jiang H, Li Xi, Yanning Lu, Sun Z, Wang Y, Chang Xu. Study on isothermal pyrolysis and product characteristics of basic components of waste wind turbine blades. J Anal Appl Pyrol. 2023. https://doi.org/10.1016/j.jaap.2023.105964.

    Article  Google Scholar 

  38. Yousef S, Justas E, Nerijus S, Mohammed AA. Pyrolysis kinetic behaviour and thermodynamic analysis of waste wind turbine blades (carbon fibres/unsaturated polyester resin). Energy Sour Part A Recov Util Environ Effects. 2023. https://doi.org/10.1080/15567036.2023.2246422.

    Article  Google Scholar 

  39. Yousef S, Justas E, Kęstutis Z, Nerijus S. Recovery of styrene-rich oil and glass fibres from fibres-reinforced unsaturated polyester resin end-of-life wind turbine blades using pyrolysis technology. J Anal Appl Pyrolysis. 2023. https://doi.org/10.1016/j.jaap.2023.106100.

    Article  Google Scholar 

  40. Khorasani MAM, Sahebian S, Zabett A. Effects of toughened polyester on fatigue behavior of glass fiber reinforced polyester composite for wind turbine blade. Polym Compos. 2020. https://doi.org/10.1002/pc.25808.

    Article  Google Scholar 

  41. Yousef S, Eimontas J, Striūgas N, Abdelnaby MA. A new strategy for butanol extraction from COVID-19 mask using catalytic pyrolysis process over ZSM-5 zeolite catalyst and its kinetic behavior. Thermochim Acta. 2022. https://doi.org/10.1016/j.tca.2022.179198.

    Article  Google Scholar 

  42. Striūgas N, Abdelnaby MA, Yousef S. Catalytic pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallized food packaging plastics with different concentrations of ZSM-5 zeolite catalyst. Polymers. 2021. https://doi.org/10.3390/polym13050702.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ali Abdelnaby M, Eimontas J, Striūgas N, Mohamed A. Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of end-life ultrafiltration polymer nanocomposite membranes. Chem Eng J. 2022. https://doi.org/10.1016/j.cej.2021.131181.

    Article  Google Scholar 

  44. Praspaliauskas M, Eimontas J, Striūgas N, Abdelnaby MA. Pyrolysis kinetic behaviour, TG-FTIR, and GC/MS analysis of cigarette butts and their components. Biomass Convers Biorefinery. 2022. https://doi.org/10.1007/s13399-022-02698-5.

    Article  Google Scholar 

  45. Yousef S, Striūgas N, Eimontas J, Abdelnaby MA. Effect of aluminum leaching pretreatment on catalytic pyrolysis of metallised food packaging plastics and its linear and nonlinear kinetic behaviour. Sci Total Environ. 2022. https://doi.org/10.1016/j.scitotenv.2022.157150.

    Article  PubMed  Google Scholar 

  46. Eimontas J, Striūgas N, Mohamed A, Ali Abdelnaby M. Pyrolysis kinetic behavior and thermodynamic analysis of PET nonwoven fabric. Materials. 2023. https://doi.org/10.3390/ma16186079.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schwartz NR, Paulsen AD, Blaise MJ, Wagner AL, Yelvington PE. Analysis of emissions from combusting pyrolysis products. Fuel. 2020. https://doi.org/10.1016/j.fuel.2020.117863.

    Article  Google Scholar 

  48. Bai Z, Song L, Hu Y, Gong X, Yuen RKK. Investigation on flame retardancy, combustion and pyrolysis behavior of flame retarded unsaturated polyester resin with a star-shaped phosphorus-containing compound. J Anal Appl Pyrol. 2014. https://doi.org/10.1016/j.jaap.2013.11.019.

    Article  Google Scholar 

  49. Ma Y, Hu L, Huang Y, Chu F, Zhang X, Guo Z, Jia S, Zhu N, Chen Y, Gu Y. Mechanism of accelerated concurrent flame spread over glass fiber reinforced unsaturated polyester resin composites with ATH/MH retardants under external radiation. Int J Heat Mass Transf. 2023. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123505.

    Article  Google Scholar 

  50. Li M, Zhang YS, Cheng S, Qu B, Li A, Meng F, Ji G. The impact of heating rate on the decomposition kinetics and product distribution of algal waste pyrolysis with in-situ weight measurement. Chem Eng J. 2023. https://doi.org/10.1016/j.cej.2023.141368.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rahman ASR, Mustapha R, Mustapha SNH. Mechanical properties of unsaturated polyester/epoxidized palm oil/Kenaf fibre composite at different styrene content. Mater Today Proc. 2023. https://doi.org/10.1016/j.matpr.2022.10.016.

    Article  Google Scholar 

  52. Kjærside Storm B. Surface protection and coatings for wind turbine rotor blades. Adv Wind Turbine Blade Design Mater. 2013. https://doi.org/10.1533/9780857097286.3.387.

    Article  Google Scholar 

  53. Kandola BK, Krishnan L, Deli D, Ebdon JR. Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites Part 2: effects of resin structure, compatibility and composition on fire performance. Polym Degrad Stab. 2015;12:1016. https://doi.org/10.1016/j.polymdegradstab.2014.11.002.

    Article  CAS  Google Scholar 

  54. Jang D, Lee S. Correlating thermal conductivity of carbon fibers with mechanical and structural properties. J Ind Eng Chem. 2020. https://doi.org/10.1016/j.jiec.2020.06.026.

    Article  Google Scholar 

  55. Dahal R, Uusi-Kyyny P, Pokki J-P, Ohra-aho T, Alopaeus V. Conceptual design of a distillation process for the separation of styrene monomer from polystyrene pyrolysis oil: experiment and simulation. Chem Eng Res Des. 2023. https://doi.org/10.1016/j.cherd.2023.05.039.

    Article  Google Scholar 

  56. An W, Wang XL, Liu X, Wu G, Xu S, Wang YZ. Chemical recovery of thermosetting unsaturated polyester resins. Green Chem. 2022. https://doi.org/10.1039/d1gc03724b.

    Article  Google Scholar 

  57. Hu SL, Li YM, Hu WJ, Hobson J, Wang DY. Strategic design unsaturated polyester resins composites with excellent flame retardancy and high tensile strength. Polym Degrad Stab. 2022. https://doi.org/10.1016/j.polymdegradstab.2022.110190.

    Article  Google Scholar 

  58. Ma L, Varveri A, Jing R, Erkens S. Comprehensive review on the transport and reaction of oxygen and moisture towards coupled oxidative ageing and moisture damage of bitumen. Constr Build Mater. 2021. https://doi.org/10.1016/j.conbuildmat.2021.122632.

    Article  Google Scholar 

  59. Yousef S, Justas E, Kęstutis Z, Nerijus S. Pyrolysis of cigarette butts as a sustainable strategy to recover triacetin for low-cost and efficient biodiesel production. J Anal Appl Pyrolysis. 2023. https://doi.org/10.1016/j.jaap.2023.106167.

    Article  Google Scholar 

  60. Cai J, Chen S. A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree. J Comput Chem. 2009. https://doi.org/10.1002/jcc.21195.

    Article  PubMed  Google Scholar 

  61. Chu F, Zhou X, Mu X, Zhu Y, Cai W, Zhou Y, Xu Z, Zou B, Mi Z, Hu W. An insight into pyrolysis and flame retardant mechanism of unsaturated polyester resin with different valance states of phosphorus structures. Polym Degrad Stab. 2022. https://doi.org/10.1016/j.polymdegradstab.2022.110026.

    Article  Google Scholar 

  62. Worzakowska M. Kinetics of the curing reaction of unsaturated polyester resins catalyzed with new initiators and a promoter. J Appl Polym Sci. 2006. https://doi.org/10.1002/app.24155.

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-MIP-23-118.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.: Conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision, writing—original draft, writing—review & editing. J.E.: Conceptualization, data curation, formal analysis. N.S.: Conceptualization, data curation, formal analysis. M.A.A.: Conceptualization, data curation, formal analysis, software.

Corresponding author

Correspondence to Samy Yousef.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

In this study, there are no human and/or animal studies, thus we don’t need any ethical approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1122 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, S., Eimontas, J., Striūgas, N. et al. Recovery of styrene from waste wind turbine blades (fiberglass/polyester resin composites) using pyrolysis treatment and its kinetic behavior. J Therm Anal Calorim 149, 521–538 (2024). https://doi.org/10.1007/s10973-023-12714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12714-z

Keywords

Navigation