Skip to main content
Log in

Effect of magnetic field and magnetic nanofluid on heat transmission improvement in a curved minichannel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study presents an analysis of heat transmission and magnetic nanofluid flow in a minichannel with corrugated upper wall and exposed to a magnetic field. Choice of this geometry allows an improvement of heat transfer contrary to that of rectangular shape. This study is developed to complete the existing ones in the literature. In this two-dimensional study, flow is supposed to be laminar, and the chosen fluid is Fe3O4-water magnetic nanofluid which is used as cooling fluid. For this nanofluid, two volume fractions (0.6, 1%) were used. Several simulations were conducted for a series of Reynolds numbers which vary between 150 and 210 and magnetic field strengths which take values ranging from 0 up to 1400 G for two chosen configurations (a source located at 15 mm and two sources located, respectively, at 7.5 and 15 mm). The results obtained show that magnetic nanofluid subjected to a magnetic field seems as an active vortex generator which modifies the flow structure, allowing a good mixing of the fluid and consequently an improvement in heat transmission. For selected values of magnetic field intensities, an improvement in heat transmission was observed followed by a reduction in pressure drop. This is due to the separation of the fluid from the lower wall which reduces the friction effect. Rise in volume fraction does not modify the flow structure, and it allows an enhancement in heat transfer. According to results obtained, we note a maximum of 10.21% enhancement of heat transmission in the case of a source located at 15 mm and a maximum of 27.44% of improvement of heat transmission in in the case of application of two sources for the case where the volume fraction is equal 1%. With this study, we can locate the correct position of the magnets allowing a good heat transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

B:

Magnetic flux density (Gauss)

Cp:

Specific heat (J kg1 K1)

D:

Hydraulic diameter (m)

F k :

Magnetic body force (N m3)

h :

Convection heat transfer coefficient (W m2 K1)

\({\vec H}\) :

Magnetic field intensity (A m−1)

\({\vec H_0}\) :

Characteristic magnetic field strength (A m−1)

\(k\) :

Thermal conductivity (W m1 K1)

L :

Channel length (m)

\({\vec M}\) :

Magnetization (A m−1)

Mn:

Magnetic number

Nu:

Nusselt number

P :

Pressure drop (Pa)

Pr:

Prandtl number

\(q^{\prime\prime}\) :

Heat flux (W m2)

Re:

Reynolds number

T :

Temperature (K)

u, v :

Velocity components (m s1)

U, V :

Nondimensional velocity

x ,y :

Directions

\(\rho\) :

Density (kg.m3)

\(\beta\) :

Coefficient of thermal expansion (K1)

\(\mu\) :

Dynamic viscosity (kg m1 s1)

\({\mu_0}\) :

Permeability of free space (4π × 10−7 N A2)

\(\phi\) :

Volume fraction (%)

\(\theta\) :

Nondimensional temperature

\({\chi_\text{m}}\) :

Magnetic susceptibility

\({\chi_0}\) :

Differential magnetic Susceptibility (0.06)

\({\tau_{\text{ij}}}\) :

Stress matrix

\({\delta_{\text{ij}}}\) :

Kronecker delta

b:

Bulk

f:

Fluid

in:

Inlet

nf:

Nanofluid

s:

Nanoparticle

w:

Bottom surface

0:

Reference

References

  1. Cherief W, Avenas Y, Ferrouillat S, Kedous-Lebouc A, Jossic L, Petit M. Parameters affecting forced convection enhancement in ferrofluid cooling systems. Appl Therm Eng. 2017;123:156–66. https://doi.org/10.1016/J.APPLTHERMALENG.2017.05.057.

    Article  CAS  Google Scholar 

  2. Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surfaces A Physicochem Eng Asp. 2010;355:109–13. https://doi.org/10.1016/J.COLSURFA.2009.11.044.

    Article  CAS  Google Scholar 

  3. Rahmoune I, Bougoul S, Chamkha AJ. Analysis of nanofluid natural convection in a particular shape of a cavity. Eur Phys J Spec Top. 2022;231(13):2901–14. https://doi.org/10.1140/epjs/s11734-022-00588-5.

    Article  CAS  Google Scholar 

  4. Mansour MA, Ahmed SE, Rashad AM. MHD natural convection in a square enclosure using nanofluid with the influence of thermal boundary conditions. J Appl Fluid Mech. 2016;9(5):2515–2525. https://doi.org/10.18869/acadpub.jafm.68.236.24409

  5. Rahmoune I, Bougoul S. Numerical analysis of laminar mixed convection heat transfer of the Al2O3–H2O nanofluid in a square channel. J Appl Mech Tech Phys. 2021;62(6):920–6. https://doi.org/10.1134/S0021894421060055.

    Article  CAS  Google Scholar 

  6. Pandey SD, Nema V. Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp Thermal Fluid Sci. 2012;38:48–256. https://doi.org/10.1016/j.expthermflusci.2011.12.013.

    Article  CAS  Google Scholar 

  7. Nasrin R, Parvin S, Alim MA. Effect of Prandtl number on free convection in a solar collector filled with nanofluid. Procedia Eng. 2013;56:54–62. https://doi.org/10.1016/j.proeng.2013.03.088.

    Article  CAS  Google Scholar 

  8. Tayebi T, Dogonchi AS, Karimi N, Ge-JiLe H, Chamkha AJ, Elmasry Y. Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins. Sustain Energy Technol Assess. 2021;46: 101274. https://doi.org/10.1016/j.seta.2021.101274.

    Article  Google Scholar 

  9. Chamkha AJ, Dogonchi AS, Ganji DD. Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM. Appl Sci. 2018;8(12):2396. https://doi.org/10.3390/app8122396.

    Article  CAS  Google Scholar 

  10. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Ganji DD, Chamkha AJ. Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure. Int J Numer Methods Heat Fluid Flow. 2020;30(11):4811–4836. https://doi.org/10.1108/HFF-11-2019-0845

  11. Afshar SR, Mishra SR, Dogonchi AS, Karimi N, Chamkha AJ, Abulkhair H. Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink. J Taiwan Inst Chem Eng. 2021;128:98–113. https://doi.org/10.1016/j.jtice.2021.09.006.

    Article  CAS  Google Scholar 

  12. Zidana AM, Tayebi T, Dogonchi AS, Chamkha AJ, Ben Hamida MB, Galal AM. Entropy-based analysis and economic scrutiny of magneto thermal natural convection enhancement in a nanofluid-filled porous trapezium-shaped cavity having localized baffles. Waves Random Complex Media. 2022;1–21. https://doi.org/10.1080/17455030.2022.2084651

  13. Mondal S, Dogonchi AS, Tripathi N, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM. J Braz Soc Mech Sci Eng. 2019;42(1):19. https://doi.org/10.1007/s40430-019-2103-2.

    Article  CAS  Google Scholar 

  14. Pasha AA, MottahirAlam Md, Tayebi T, Kasim S, Dogonchi AS, Irshad K, Chamkha AJ, Khan J, Galal AM. Heat transfer and irreversibility evaluation of non-Newtonian nanofluid density-driven convection within a hexagonal-shaped domain influenced by an inclined magnetic field. Case Stud Therm Eng. 2023;41:102588. https://doi.org/10.1016/j.csite.2022.102588

  15. Shao Y, Nayak MK, Dogonchi AS, Chamkha AJ, Elmasry Y, Galal AM. Ternary hybrid nanofluid natural convection within a porous prismatic enclosure with two movable hot baffles: An approach to effective cooling. Case Stud Therm Eng. 2022;40: 102507. https://doi.org/10.1016/j.csite.2022.102507.

    Article  Google Scholar 

  16. Eshaghi S, Izadpanah F, Dogonchi AS, Chamkha AJ, Ben Hamida MB, Alhumade H. The optimum double diffusive natural convection heat transfer in H-Shaped cavity with a baffle inside and a corrugated wall. Case Stud Therm Eng. 2021;28: 101541. https://doi.org/10.1016/j.csite.2021.101541.

    Article  Google Scholar 

  17. Dogonchi AS, Waqas M, Afshar SR, Seyyedi SM, Hashemi-Tilehnoee M, Chamkha AJ, Ganji DD. Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles. Int J Numer Methods Heat Fluid Flow. 2019;30(2):659–80. https://doi.org/10.1108/HFF-05-2019-0390.

    Article  Google Scholar 

  18. Dogonchi AS, Mishra SR, Chamkha AJ, Ghodrat M, Elmasry Y, Alhumade H. Thermal and entropy analyses on buoyancy-driven flow of nanofluid inside a porous enclosure with two square cylinders: Finite element method. Case Stud Therm Eng. 2021;27: 101298. https://doi.org/10.1016/j.csite.2021.101298.

    Article  Google Scholar 

  19. Ho CJ, Liu Y-Ch, Ghalambaz M, Yan W-M. Forced convection heat transfer of Nano-Encapsulated Phase Change Material (NEPCM) suspension in a mini-channel heatsink. Int J Heat Mass Transf. 2020;155 :119858. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119858

  20. Ghalambaz M, Hashem Zadeh SM, Mehryan SAM, Pop I, Wen D. Analysis of melting behavior of PCMs in a cavity subject to a line source magnetic field using a moving grid technique. Appl Math Model. 2020;77(2):1936–53. https://doi.org/10.1016/j.apm.2019.09.015.

    Article  Google Scholar 

  21. Veera Krishna M, Anand PVS, Chamkha AJ. Heat and mass transfer on free convective flow of a micropolar fluid through a porous surface with inclined magnetic field and hall effects. Spec Top Rev Porous Media. 2019;10(3):203–23. https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2018026943.

    Article  Google Scholar 

  22. Veera Krishna M, Swarnalathamma BV, Chamkha AJ. Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J Ocean Eng Sci. 2019;4(3):263–75. https://doi.org/10.1016/j.joes.2019.05.002.

    Article  Google Scholar 

  23. Veera Krishna M, Chamkha AJ. Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids—application in biomedical engineering. J Egypt Math Soc. 2020;28(1):1. https://doi.org/10.1186/s42787-019-0065-2.

    Article  Google Scholar 

  24. Bhattacharyya S, Sharma AK, Vishwakarma DK, Goel V, Paul AR. Influence of magnetic baffle and magnetic nanofluid on heat transfer in awavy minichannel. Sustain Energy Technol Assess. 2023;56: 102954. https://doi.org/10.1016/j.seta.2022.102954.

    Article  Google Scholar 

  25. Souayeh B, Bhattacharyya S, Hdhiri N, Hammami F, Yasin E, Raju SSK, et al. Effect of magnetic baffles and magnetic nanofluid on thermo-hydraulic characteristics of dimple mini channel. Thermal Energy Applications Sustain. 2022;14:10419. https://doi.org/10.3390/SU141610419.

    Article  CAS  Google Scholar 

  26. Scherer C, Figueriedo Neto AM. Ferrofluids: properties and applications. Braz J Phys. 2005;35:718‐727. https://www.scielo.br/j/bjp/a/D6k8P9N3Cxf56TjdZ4BGFQq

  27. Motozawa M, Chang J, Sawada T, Kawaguchi Y. Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid. Phys Procedia. 2010;9:190–3. https://doi.org/10.1016/j.phpro.2010.11.043.

    Article  CAS  Google Scholar 

  28. Goharkhah M, Ashjaee M. Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. J Magn Magn Mater. 2014;362:80–9. https://doi.org/10.1016/j.jmmm.2014.03.025.

    Article  CAS  Google Scholar 

  29. Zheng D, Wang J, Chen Z, Baleta J, Sund´en B. Performance analysis of a plate heat exchanger using various nanofluids. Int J Heat Mass Transf. 2020;158. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.119993.

  30. Ghofrani A, Dibaei MH, Hakim Sima A, Shafii MB. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field. Exp Therm Fluid Sci. 2013;49:193–200. https://doi.org/10.1016/j.expthermflusci.2013.04.018.

    Article  CAS  Google Scholar 

  31. Sadeghinezhad E, Mehrali M, Akhiani AR, et al. Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field. Appl Therm Eng. 2017;114:415–27. https://doi.org/10.1016/j.applthermaleng.2016.11.199.

    Article  CAS  Google Scholar 

  32. Ben-Nakhi A, Chamkha AJ. Conjugate natural convection around a finned pipe in a square enclosure with internal heat generation. Int J Heat Mass Transf. 2007;50:2260–71. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2006.10.036.

    Article  Google Scholar 

  33. Joubert JC, Sharifpur M, Solomon AB, Meyer JP. Enhancement in heat transfer of aferrofluid in a differentially heated square cavity through the use of permanent magnets. JMMM. 2017;443:149–58. https://doi.org/10.1016/J.JMMM.2017.07.062.

    Article  CAS  Google Scholar 

  34. Yang J, Yang X, Wang J, Chin H, Sunden B. Review on thermal performance of nanofluids with and without magnetic fields in heat exchange devices In reviewing. Front Energy Res. 2022;10: 822776. https://doi.org/10.3389/fenrg.2022.822776.

    Article  Google Scholar 

  35. Bezaatpour M, Goharkhah M. A magnetic vortex generator for simultaneous heat transfer enhancement and pressure drop reduction in a mini channel. Heat Transf Asian Res. 2020. https://doi.org/10.1002/htj.21658.

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Bougoul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmoune, I., Bougoul, S. Effect of magnetic field and magnetic nanofluid on heat transmission improvement in a curved minichannel. J Therm Anal Calorim 149, 729–744 (2024). https://doi.org/10.1007/s10973-023-12707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12707-y

Keywords

Navigation