Skip to main content
Log in

Experimental study on the effect of cone-shaped bluff body on lean premixed flames in a swirl burner

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An experimental study was conducted to investigate the effect of conical bluff bodies on the flame dynamics and emissions from a natural gas/air swirl burner. Three bluff bodies (a disc, a 130° cone, and an 80° cone) were positioned above burner’s outlet to influence the flame dynamics and optimize emissions. The swirl burner performance in lean premixed combustion condition was evaluated at a constant swirl number of 0.87 at 0.65–0.90 equivalence ratios. The flame height and width were increased in the experiments with conical bluff bodies compared to the disc shape. Also, 130° and 80° bluff bodies enhanced the chemiluminescence of all species, as well as the uniformity of the thermal field by distributing the reaction zone. In particular, the bluff bodies impacted the flame dynamics and resulted in decreased \({\text{NO}}_\text{x}\) formation by a minimum of 12.79% and 19.13% and increased \({\text{CO}}\) emissions by 22.71% and 14.18% for 130° and 80° cone bluff bodies, respectively. The equivalence ratios of blow-off and lift-off reduced and increased with conical bluff bodies compared to the disc shape, respectively. The results suggest that the conical shapes diminish the central recirculation zone (CRZ) that is responsible for a concentrated reaction zone above the burner outlet. A weaker CRZ reduces the temperature of the burner bluff body and resolves the concentrated reaction zone to reduce \({\text{NO}}_\text{x}\) formation. The cone angle of the bluff body can be utilized as an optimization tool to adjust emissions and increase operational lifetime of swirl burners in industrial combustion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Q :

Flow rate (air, gas) (\({\text{m}}^{3}\) h−1)

P :

Pressure (mbar)

T :

Temperature (℃)

G :

Momentum (\({\text{kg }}\;{\text{m}}^{2}\) s−2)

H :

Height (mm)

W :

Width (mm)

R :

Radius (mm)

d :

Diameter (mm)

L :

Pixel length

N :

Number of pixels

Φ :

Equivalence ratio

\(\alpha\) :

Swirler vane angle (deg)

\(\Delta y\) :

Actual size of the unit pixel

ang:

Angular

x :

Linear

b:

Bluff body radius

c:

Working fluid

r:

Standard reference condition

f:

Flame

i:

Unit vector in the direction of the x-axis

j:

Unit vector in the direction of the x-axis

S :

Swirl number

CRZ:

Central recirculation zone

LPC:

Lean premixed combustion

LPG:

Liquefied petroleum gas

SFLF:

Soot-free length fraction

sp.G:

Specific gravity

LHV:

Low heating value (kJ m−3)

NA:

Numerical aperture

CCD:

Charged-coupled device

HRR:

Heat release rate

\(\overline{X}\) :

Data average

n :

Numbers of the measurement

SD:

Standard deviation

U :

Uncertainty

ppm:

Parts per million

\({*}\) :

Excited radical

References

  1. Chen YF, Su S, Song YW, Wang G, Liu T, Jia MC, et al. Experimental and DFT study on the relationships between the evolution mechanism of PAHs and NOx precursors during coal pyrolysis. Combust Flame. 2023;254.

  2. Flamme M. New combustion systems for gas turbines (NGT). Appl Therm Eng. 2004;24:1551–9.

    Article  Google Scholar 

  3. Cho ES, Chung SH. Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion. J Mech Sci Technol. 2009;23:650–8.

    Article  Google Scholar 

  4. Singh UK, Smith GC. The American Society of Mechanical Engineers 345 E. 47th St., New York, N.Y. 10017. he Int GasTurbine Aeroengine Congr Exhib. 1998;1–8.

  5. Cabot G, Vauchelles D, Taupin B, Boukhalfa A. Experimental study of lean premixed turbulent combustion in a scale gas turbine chamber. Exp Therm Fluid Sci. 2004;28:683–90.

    Article  CAS  Google Scholar 

  6. Barlow RS, Dunn MJ, Sweeney MS, Hochgreb S. Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH 4/air flames. Combust Flame. 2012;159:2563–75. Available from: https://doi.org/10.1016/j.combustflame.2011.11.013

  7. Chong CT, Lam SS, Hochgreb S. Effect of mixture flow stratification on premixed flame structure and emissions under counter-rotating swirl burner configuration. Appl Therm Eng. 2016;105:905–12. https://doi.org/10.1016/j.applthermaleng.2016.03.164.

    Article  CAS  Google Scholar 

  8. Zhang W, Wang J, Lin W, Guo S, Zhang M, Li G, et al. Measurements on flame structure of bluff body and swirl stabilized premixed flames close to blow-off. Exp Therm Fluid Sci. 2019;104:15–25. https://doi.org/10.1016/j.expthermflusci.2019.02.010.

    Article  CAS  Google Scholar 

  9. Aerodynamics C, R Byjmbe, Applied NAC. Combustion Aerodynamics. 1972;762–5.

  10. Chen YC, Chang CC, Pan KL, Yang JT. Flame lift-off and stabilization mechanisms of nonpremixed jet flames on a bluff-body burner. Combust Flame. 1998;115:51–65.

    Article  CAS  Google Scholar 

  11. Datta A, Som SK. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Appl Therm Eng. 1999;19:949–67.

    Article  CAS  Google Scholar 

  12. Esquiva-Dano I, Nguyen HT, Escudie D. Influence of a bluff-body’s shape on the stabilization regime of non-premixed flames. Combust Flame. 2001;127:2167–80.

    Article  CAS  Google Scholar 

  13. Chan CK, Lau KS, Chin WK, Cheng RK. Freely propagating open premixed turbulent flames stabilized by swirl. Symp Combust. 1992;24:511–8.

    Article  Google Scholar 

  14. Guo S, Wang J, Zhang W, Zhang M, Huang Z. Effect of hydrogen enrichment on swirl/bluff-body lean premixed flame stabilization. Int J Hydrogen Energy. 2020;45:10906–19. https://doi.org/10.1016/j.ijhydene.2020.02.020.

    Article  CAS  Google Scholar 

  15. Gupta AK, Lewis MJ, Daurer M. Swirl effects on combustion characteristics of premixed flames. J Eng Gas Turbines Power. 2001;123:619–26.

    Article  CAS  Google Scholar 

  16. Group F, York N. Gas turbine combustion—alternative fuels and emissions, by Arthur H. Lefebvre and Dillip R. Ballal. CRC reviewed by : Donald W . Bahr 1. 2015;132:116501.

  17. El-Mahallawy F, Habik SE-D, El-Mahallawy F, Habik SE-D. Chapter 1—combustion fundamentals. Fundam Technol Combust. 2002;1–75.

  18. Shanbhogue SJ, Husain S, Lieuwen T. Lean blowoff of bluff body stabilized flames: Scaling and dynamics. Prog Energy Combust Sci. 2009;35:98–120.

    Article  CAS  Google Scholar 

  19. Tong Y, Liu X, Wang Z, Richter M, Klingmann J. Experimental and numerical study on bluff-body and swirl stabilized diffusion flames. Fuel. 2018;217:352–64.

    Article  CAS  Google Scholar 

  20. Behzadi M, Siyadat SH, Ommi F, Saboohi Z. Study of the effect of bluff body size on stability limits of a premixed natural gas swirl burner. J Therm Anal Calorim. 2022;147:1583–96. https://doi.org/10.1007/s10973-020-10520-5.

    Article  CAS  Google Scholar 

  21. Hatem F, Al-Fahham M, Alsaegh AS, Al-dulaimi ZM, Valera MA. Experimental Investigation on effects of bluff-body size and axial air injection on blowoff limits in swirl burners. J Eng Sci Technol. 2021;16:2202–14.

    Google Scholar 

  22. Ata A, Bedii Ozdemir I. Study on the effects of cone height on the turbulent nonpremixed flames downstream of a conical bluff body. J Therm Sci Eng Appl. 2021;13:031022.

    Article  CAS  Google Scholar 

  23. Kim HS, Arghode VK, Linck MB, Gupta AK. Hydrogen addition effects in a confined swirl-stabilized methane-air flame. Int J Hydrogen Energy. 2009;34:1054–62. https://doi.org/10.1016/j.ijhydene.2008.10.034.

    Article  CAS  Google Scholar 

  24. Laphirattanakul P, Charoensuk J. Effect of central cone-shaped bluff body on performance of premixed LPG burner. Appl Therm Eng. 2017;114:98–109. https://doi.org/10.1016/j.applthermaleng.2016.11.157.

    Article  CAS  Google Scholar 

  25. Mishra DP, Kumar P. Experimental study of bluff-body stabilized LPG-H2 jet diffusion flame with preheated reactant. Fuel. 2010;89:212–8. https://doi.org/10.1016/j.fuel.2009.07.030.

    Article  CAS  Google Scholar 

  26. Kumar P, Mishra DP. Experimental investigation of laminar LPG-H2 jet diffusion flame. Int J Hydrogen Energy. 2008;33:225–31.

    Article  CAS  Google Scholar 

  27. Kumar P, Mishra DP. Effects of bluff-body shape on LPG-H2 jet diffusion flame. Int J Hydrogen Energy. 2008;33:2578–85.

    Article  CAS  Google Scholar 

  28. Jerzak W, Kuźnia M. Experimental study of impact of swirl number as well as oxygen and carbon dioxide content in natural gas combustion air on flame flashback and blow-off. J Nat Gas Sci Eng. 2016;29:46–54.

    Article  CAS  Google Scholar 

  29. Zhang F, Heidarifatasmi H, Harth S, Zirwes T, Wang R, Fedoryk M, et al. Numerical evaluation of a novel double-concentric swirl burner for sulfur combustion. Renew Sustain Energy Rev. 2020;133:11025. https://doi.org/10.1016/j.rser.2020.110257.

    Article  CAS  Google Scholar 

  30. Huang L, Liu C, Deng T, Jiang H, Wu P. Experimental investigation on the influence of central airflow on swirl combustion stability and flame shape. J Therm Anal Calorim. 2021;144:503–14. https://doi.org/10.1007/s10973-020-10399-2.

    Article  CAS  Google Scholar 

  31. Zhou H, Tao C, Liu Z, Meng S, Cen K. Optimal control of turbulent premixed combustion instability with annular micropore air jets. Aerosp Sci Technol. 2020;98:105650. https://doi.org/10.1016/j.ast.2019.105650.

    Article  Google Scholar 

  32. Williams DR. Anderson NB. References J Health Psychol. 1997;2:335–51.

    CAS  Google Scholar 

  33. Sweeney MS, Hochgreb S, Barlow RS. The structure of premixed and stratified low turbulence flames. Combust Flame. 2011;158:935–48. https://doi.org/10.1016/j.combustflame.2011.02.007.

    Article  CAS  Google Scholar 

  34. Zhou H, Tao C. Effects of annular N2/O2 and CO2/O2 jets on combustion instabilities and NOx emissions in lean-premixed methane flames. Fuel. 2020;263:116709.

    Article  CAS  Google Scholar 

  35. Gomes Antunes JM, Mikalsen R, Roskilly AP. An investigation of hydrogen-fuelled HCCI engine performance and operation. Int J Hydrogen Energy;2008:5823–8.

  36. Liu X, Elbaz AM, Gong C, Bai XS, Zheng HT, Roberts WL. Effect of burner geometry on swirl stabilized methane/air flames: a joint LES/OH-PLIF/PIV study. Fuel. 2017;207:533–46. https://doi.org/10.1016/j.fuel.2017.06.092.

    Article  CAS  Google Scholar 

  37. Bell S. Good Practice Guide No. 11—Introductory Guide to Uncertainty of Measurement. Meas Good Pract Guid. 2001;41.

  38. Gatti M, Gaudron R, Mirat C, Zimmer L, Schuller T. Impact of swirl and bluff-body on the transfer function of premixed flames. Proc Combust Inst. 2019;37:5197–204. https://doi.org/10.1016/j.proci.2018.06.148.

    Article  CAS  Google Scholar 

  39. Gaydon AG, Wolfhard HG. Flames: their structure, radiation and temperature;1979.

  40. Ballester J, García-Armingol T. Diagnostic techniques for the monitoring and control of practical flames. Prog Energy Combust Sci. 2010;36:375–411.

    Article  Google Scholar 

  41. Higgins B, McQuay MQ, Lacas F, Rolon JC, Darabiha N, Candel S. Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel. 2001;80:67–74.

    Article  CAS  Google Scholar 

  42. Kojima J, Ikeda Y, Nakajima T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames. Combust Flame. 2005;140:34–45.

    Article  CAS  Google Scholar 

  43. Huang HW, Zhang Y. Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing. Meas Sci Technol. 2008;19:085406.

    Article  Google Scholar 

  44. Najarnikoo M, Targhi MZ, Pasdarshahri H. Experimental study on the flame stability and color characterization of cylindrical premixed perforated burner of condensing boiler by image processing method. Energy. 2019;189:116130. https://doi.org/10.1016/j.energy.2019.116130.

    Article  Google Scholar 

  45. Sun Y, Sun M, Zhao D, Chen Y, Ma G, Wan M, et al. Blow-off characteristics of a premixed methane/air flame response to acoustic disturbances in a longitudinal combustor. Aerosp Sci Technol. 2021;118:107003. https://doi.org/10.1016/j.ast.2021.107003.

    Article  Google Scholar 

  46. Yuan R, Kariuki J, Mastorakos E. Measurements in swirling spray flames at blow-off. Int J Spray Combust Dyn. 2018;10:185–210.

    Article  Google Scholar 

  47. Sommerer Y, Galley D, Poinsot T, Ducruix S, Lacas F, Veynante D. Large eddy simulation and experimental study of flashback and blow-off in a lean partially premixed swirled burner. J Turbul. 2004;5:37–41.

    Article  Google Scholar 

  48. Hasan KS, Abd Al-Wahid WA, Khwayyir HHS. Flashback and combustion stability in swirl burners: review paper. IOP Conf Ser Mater Sci Eng. 2020;928:022045.

    Article  CAS  Google Scholar 

  49. Cavaliere DE, Kariuki J, Mastorakos E. A comparison of the blow-off behaviour of swirl-stabilized premixed, non-premixed and spray flames. Flow, Turbul Combust. 2013;91:347–72.

    Article  CAS  Google Scholar 

  50. Xiao Y, Cao Z, Wang C. Flame stability limits of premixed low-swirl combustion. Adv Mech Eng. 2018;10:1–11.

    Article  Google Scholar 

  51. Gimeno J, Martí-Aldaraví P, Carreres M, Cardona S. Experimental investigation of the lift-off height and soot formation of a spray flame for different co-flow conditions and fuels. Combust Flame. 2021;233:111589. https://doi.org/10.1016/j.combustflame.2021.111589.

    Article  CAS  Google Scholar 

  52. U.S. Environmental Protection Agency. Progress Report 2011: Clean Air Interstate Rule, Acid Rain Program, and Former NOx Budget Trading Program. 2011;1–15. http://www.epa.gov/airmarkets/progress/ARPCAIR11_downloads/ARPCAIR11_analyses.pdf

  53. Khatamnejad H, Khalilarya S, Jafarmadar S, Mirsalim M, Gharehghani A, DaeiNiaki SO. Experimental investigation on the effect of natural gas premixed ratio on combustion and emissions in an IDI engine. J Therm Anal Calorim. 2019;138:3977–86. https://doi.org/10.1007/s10973-019-08726-3.

    Article  CAS  Google Scholar 

  54. Singh OK. Combustion simulation and emission control in natural gas fuelled combustor of gas turbine. J Therm Anal Calorim. 2016;125:949–57.

    Article  CAS  Google Scholar 

  55. Franco MC, Rocha RC, Costa M, Yehia M. Characteristics of NH3/H2/air flames in a combustor fired by a swirl and bluff-body stabilized burner. Proc Combust Inst. 2021;38:5129–38.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MA conducted experiments, wrote the paper, and analysed the data. REB conducted literature review, wrote the paper, and analysed the data. HFF developed conceptual framework and revised the manuscript. KM supervised the experiments and provided supervision and guidance.

Corresponding author

Correspondence to Hamed Farmahini Farahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M., Elkaei Behjati, R., Farmahini Farahani, H. et al. Experimental study on the effect of cone-shaped bluff body on lean premixed flames in a swirl burner. J Therm Anal Calorim 149, 699–710 (2024). https://doi.org/10.1007/s10973-023-12667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12667-3

Keywords

Navigation