Skip to main content
Log in

Role of thermal radiation and double-diffusivity convection on peristaltic flow of induced magneto-Prandtl nanofluid with viscous dissipation and slip boundaries

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to explore the effects of radiative-induced magneto-Prandtl nanofluid on peristaltic waves, in conjunction with viscous dissipation and double-diffusivity convection caused by slip boundaries over an asymmetric channel, using the long wavelength and low but finite Reynold number approximation. The application of thermal radiation and double diffusion is significant in medical research, particularly for treating skin-related ailments through the use of infrared radiation technique. Additionally, infrared radiation can be utilized for medical treatment to restore thermal regulation homeostasis. This study integrates peristaltic motion theory, heat flux using linear approximation, and thermal radiation to analyze the flow problem which incorporates the situation with small temperature difference. The mathematical framework is based on partial differential equations that are further calculated through Numerical Solutions. The numerical solution is calculated using built-in command in the software Mathematica 11 and MATLAB. The impact of various physical parameters on the temperature profile, pressure rise, velocity profile, solute (species) concentration of thermal radiation is illustrated graphically. The significant finding of the study is that the heat radiation effect on blood circulation enhances the temperature which may help to destroy the cancer tissues in drug distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhu QY, Zhuang YJ, Yu HZ. Entropy generation due to three-dimensional double-diffusive convection of power-law fluids in heterogeneous porous media. Int J Heat Mass Transf. 2017;106:61–82.

    Article  CAS  Google Scholar 

  2. Eid MR, Mabood F, Mahny KL. On 3D Prandtl nanofluid flow with higher-order chemical reaction. Proc Inst Mech Eng C J Mech Eng Sci. 2021;235:3962–74.

    Article  CAS  Google Scholar 

  3. Elmaboud YA, Abdelsalam SI. DC/AC magnetohydrodynamic-micropump of a generalized Burger’s fluid in an annulus. Phys Scr. 2019;94:115209.

    Article  Google Scholar 

  4. Khan MI, Qayyum S, Hayat T, Alsaedi A. Investigation of Sisko fluid through entropy generation. J Mol Liq. 2018;257:155–63.

    Article  CAS  Google Scholar 

  5. Amanulla CH, Saleem S, Wakif A, Al Qarni MM. MHD Prandtl fluid flow past an isothermal permeable sphere with slip effects. Case Stud Therm Eng. 2019;14:100447.

    Article  Google Scholar 

  6. Eid MR, Mahny KL, Al-Hossainy AF. Homogeneous-heterogeneous catalysis on electromagnetic radiative Prandtl fluid flow: Darcy-Forchheimer substance scheme. Surf Interfaces. 2021;24:101119.

    Article  CAS  Google Scholar 

  7. Ullah Z, Zaman G, Ishak A. Magnetohydrodynamic tangent hyperbolic fluid flow past a stretching sheet. Chin J Phys. 2020;66:258–68.

    Article  CAS  Google Scholar 

  8. Latham TW. Fluid Motions in a peristaltic pump, M.Sc. Thesis, MIT, Cambridge;1966.

  9. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. Cambridge Uni Press. 1969;37:799–825.

    Google Scholar 

  10. Jaffrin MY, Shapiro AH. Peristaltic pumping. Annu Rev Fluid Mech. 1971;3:13–36.

    Article  Google Scholar 

  11. Vajravelu K, Sreenadh S, Devaki P, Prasad KV. Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube. Cent Eur J Phys. 2011;9:1357–65.

    CAS  Google Scholar 

  12. Akbar NS, Nadeem S, Lee C. Peristaltic flow of a Prandtl fluid model in an asymmetric channel. Int J Phys Sci. 2012;7:687–95.

    Google Scholar 

  13. Mishra M, Rao AR. Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z Angew Math Phys. 2003;54:532–50.

    Article  Google Scholar 

  14. Haroun MH. Non-linear peristaltic transport flow of a fourth grade fluid in an inclined asymmetric channel. Comput Mater Sci. 2007;39:324–33.

    Article  CAS  Google Scholar 

  15. Elmaboud YA, Abdelsalam SI, Mekheimer KS. Couple stress fluid flow in a rotating channel with peristalsis. J Hydrodyn. 2018;30:307–16.

    Article  Google Scholar 

  16. Eytan O, David E. Analysis of intra-uterine fluid motion induced by uterine contractions. Bull Math Biol. 1999;61:221–38.

    Article  CAS  PubMed  Google Scholar 

  17. Ellahi R, Bhatti MM, Riaz A. Effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium. J Porous Media. 2014;17:143–57.

    Article  Google Scholar 

  18. Bhatti MM, Zeeshan A, Ellahi R. Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc Res. 2017;110:32–42.

    Article  CAS  PubMed  Google Scholar 

  19. Haider S, Ijaz N, Zeeshan A, Li Y-Z. Magneto-hydrodynamics of a solid-liquid two-phase fluid in rotating channel due to peristaltic wavy movement. Int J Numer Methods Heat Fluid Flow. 2019;30:2501–16.

    Article  Google Scholar 

  20. Shit GC, Roy M, Ng EYK. Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel. Int J Numer Methods Biomed Eng. 2010;26:1380–403.

    Article  Google Scholar 

  21. Khan AA, Saleem I, Ellahi R, Sait SM, Vafai K. On magnetohydrodynamics Powell-Eyring fluid with Cattaneo-Christov heat flux over a curved surface. Int J Mod Phys B. 2023;37:2350190.

    Article  Google Scholar 

  22. Riaz A, Zeeshan A, Ahmad S, Razaq A, Zubair M. Effects of external magnetic field on Non-newtonian two phase fluid in an annulus with peristaltic pumping. J Magn. 2019;24:1–8.

    Article  Google Scholar 

  23. Mekheimer KS. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A. 2008;372:4271–8.

    Article  CAS  Google Scholar 

  24. Kothandapani M, Prakash J. Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel. Int J Heat Mass Transf. 2015;81:234–45.

    Article  Google Scholar 

  25. Hayat T, Nisar Z, Yasmin H, Alsaedi A. Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. J Mol Liq. 2016;220:448–53.

    Article  CAS  Google Scholar 

  26. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.

    Article  CAS  Google Scholar 

  27. Ayub S, Hayat T, Asghar S, Ahmad B. Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid. Results Phys. 2017;7:3687–95.

    Article  Google Scholar 

  28. Hussain Q, Latif T, Alvi N, Asghar S. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium. Results Phys. 2018;9:121–34.

    Article  Google Scholar 

  29. Rosseland S. Astrophysik und atom-theoretische Grundlagen. Berlin: Springer; 1931. p. 41–4.

    Book  Google Scholar 

  30. Beard DW, Walters K. Elastico-viscous boundary-layer flows: I: Two-dimensional flow near a stagnation point. Math Proc Camb Philos Soc. 1964;60:667–74.

    Article  Google Scholar 

  31. Navier LM. Memoire sur les lois du mouvement des fluids. Mémoires L’académie R Sci L’institut Fr. 1816;6:389–440.

    Google Scholar 

  32. Turkyilmazoglu M. Velocity slip and entropy generation phenomena in thermal transport through metallic porous channel. J Non Equil Thermody. 2020;45:247–56.

    Article  Google Scholar 

  33. Riaz A, Nadeem S, Ellahi R, Zeeshan A. Exact solution for peristaltic flow of Jeffrey fluid model in a three-dimensional rectangular duct having slip at the walls. Appl Bionics Biomech. 2014;11:81–90.

    Article  Google Scholar 

  34. Bhatti MM, Abbas MA, Rashidi MM. Combine effects of Magnetohydrodynamics (MHD) and partial slip on peristaltic blood flow of Ree-Eyring fluid with wall properties. Eng Sci Technol Int J Eng Sci Technol. 2016;19:1497–502.

    Google Scholar 

  35. Bhatti MM, Zeeshan A, Ijaz N. Slip effects and endoscopy analysis on blood flow of particle-fluid suspension induced by peristaltic wave. J Mol Liq. 2016;218:240–5.

    Article  CAS  Google Scholar 

  36. Turkyilmazoglu M. Exact multiple solutions for the slip flow and heat transfer in a converging channel. J Heat Trans-T ASME. 2015;137:101301.

    Article  Google Scholar 

  37. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congress Expo. 1995;66:99–105.

    Google Scholar 

  38. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  39. Daungthongsuk W, Wongwises S. A critical review of convective heat transfer nanofluids. Renew Sust Energ Rev. 2007;11:797–817.

    Article  CAS  Google Scholar 

  40. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187–96.

    Article  Google Scholar 

  41. Jamshed W, Nasir NAAM, Isa SSPM, Safdar R, Shahzad F, Nisar KS, Eid MR, Abdel-Aty AH, Yahia IS. Thermal growth in solar water pump using Prandtl-Eyring hybrid nanofluid: a solar energy application. Sci Rep. 2021;11:18704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaheen S, Maqbool K, Ellahi R, Sait SM. Heat transfer analysis of tangent hyperbolic nanofluid in a ciliated tube with entropy generation. J Therm Anal Calorim. 2021;144:2337–46.

    Article  CAS  Google Scholar 

  43. Khan AA, Arshad A, Ellahi R, Sait SM. Heat transmission in Darcy-Forchheimer flow of Sutterby nanofluid containing gyrotactic microorganisms. Int J Numer Method H. 2023;33:135–52.

    Article  Google Scholar 

  44. Zeeshan A, Ahmad M, Ellahi R, Sait SM, Shehzad N. Hydromagnetic flow of two immiscible nanofluids under the combined effects of Ohmic and viscous dissipation between two parallel moving plates. J Magn Magn Mater. 2023;575:170741.

    Article  CAS  Google Scholar 

  45. Turkyilmazoglu M. Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces. Int J Numer Method H. 2017;27:2259–67.

    Article  Google Scholar 

  46. Jamshed W, Safdar R, Brahmia A, Alanazi AK, Abo-Dief HM, Eid MR. Numerical simulations of environmental energy features in solar pump application by using hybrid nanofluid flow: Prandtl-Eyring case. Energy Environ. 2023;34:780–807.

    Article  CAS  Google Scholar 

  47. Akbar NS, Nadeem S. Endoscopic effects on peristaltic flow of a nanofluid. Commun Theor Phys. 2011;56:761–8.

    Article  Google Scholar 

  48. Alqarni AJ, Abo-Elkhair RE, Elsaid EM, Abdel-Aty AH, Abdel-wahed MS. Effect of magnetic force and moderate Reynolds number on MHD Jeffrey hybrid nanofluid through peristaltic channel: application of cancer treatment. Eur Phys J Plus. 2023;138:137.

    Article  CAS  Google Scholar 

  49. Riaz A, Ellahi R, Sait SM. Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring-Powell fluid model. J Therm Anal Calorim. 2021;143:1021–35.

    Article  CAS  Google Scholar 

  50. Mekheimer K, Hasona W, Abo-Elkhair R, Zaher A. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys Lett A. 2018;382:85–93.

    Article  CAS  Google Scholar 

  51. Hayat T, Tanveer A, Alsaedi A. Numerical analysis of partial slip on peristalsis of MHD Jeffery nanofluid in curved channel with porous space. J Mol Liq. 2016;224:944–53.

    Article  CAS  Google Scholar 

  52. Hussain F, Ellahi R, Zeeshan A, Vafai K. Modelling study on heated couple stress fluid peristaltically conveying gold nanoparticle through coaxial tube: a remedy for gland tumor and arthritis. J Mol Liq. 2018;268:149–55.

    Article  CAS  Google Scholar 

  53. Prakash J, Tripathi D, Tiwari AK, Sait SM, Ellahi R. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry. 2019;11:868.

    Article  CAS  Google Scholar 

  54. Prakash J, Siva EP, Tripathi D, Beg OA. Thermal slip and radiative heat transfer effects on electroosmotic magneto nanoliquid peristaltic propulsion through a microchannel. Heat Transf Asian Res. 2019;48:2882–908.

    Article  Google Scholar 

  55. Garimella SV, Simpson JE. Effect of thermo solutal convection on directional solidification. Sadhana. 2001;26:121–36.

    Article  CAS  Google Scholar 

  56. Bég OA, Tripathi D. Mathematica simulation of peristaltic pumping with double-diffusive convection in nanofluids a bio-nanoengineering model. Proc Inst Mech Eng Part N J Nanoeng Nanosyst. 2012;225:99–114.

    Google Scholar 

  57. Alolaiyan H, Riaz A, Razaq A, Saleem N, Zeeshan A, Bhatti MM. Effects of double diffusion convection on Third grade nanofluid through a curved compliant peristaltic channel. Coatings. 2020;10:154.

    Article  CAS  Google Scholar 

  58. Sharma A, Tripathi D, Sharma RK, Tiwari AK. Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Phys A. 2019;535:122148.

    Article  CAS  Google Scholar 

  59. Asha SK, Sunitha G. Thermal radiation and hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Stud Therm Eng. 2020;17:100560.

    Article  Google Scholar 

  60. Akram S, Athar M, Saeed K, Umair MY. Nanomaterials effects on induced magnetic field and double-diffusivity convection on peristaltic transport of Prandtl nanofluids in inclined asymmetric channel. Nanosci Nanotechnol. 2022. https://doi.org/10.1177/18479804211048630.

    Article  Google Scholar 

Download references

Acknowledgement

The authors extend their appreciation to the Ministry of Education in KSA for funding this research work through the project number KKU-IFP2-DA-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taseer Muhammad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Athar, M., Saeed, K. et al. Role of thermal radiation and double-diffusivity convection on peristaltic flow of induced magneto-Prandtl nanofluid with viscous dissipation and slip boundaries. J Therm Anal Calorim 149, 761–776 (2024). https://doi.org/10.1007/s10973-023-12643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12643-x

Keywords

Navigation