Skip to main content
Log in

Exploring the impact of vanadium on physical, structural and thermal properties of bioactive glass 46S6: a comparative study with other metallic elements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Vanadium-doped quaternary bioactive glass systems 46 SiO2, (24–x/2) Na2O, (24–x/2) CaO, 6P2O5, xV, where x = 0, 0.5, 2.5, 2.8, and 5 mass% of vanadium through the use of V2O5 oxide, were successfully synthesized by the melt-quenching technique. Several physicochemical methods were employed to study the effects of vanadium on the physical, structural, and thermal properties of all doped bioactive glasses 46S6-xV. Density (ρg), molar volume (Vm), oxygen molar volume (VO), and oxygen packing density (OPD) variations were correlated with the decrease in compactness of the vitreous network upon the introduction of 2.8 mass% vanadium. Investigations revealed that the bioactive glass network is less polymerized with an increase in vanadium content up to 2.8 mass%. The thermal characteristics and excess entropy ΔSex of doped bioactive glasses were determined. Calculated thermal stability factors show the high forming ability of elaborated bioactive glass. The obtained results show that the introduction of 2.8 mass% of vanadium on the glass matrix induces a significant decrease in ∆Tg (49 K) and ∆Tf (250 K). Increases in excess entropy confirm that the presence of vanadium leads to a more disordered 46S6 glass matrix. The studied 46S6 glass exhibits better thermal properties when vanadium is incorporated, making it more useful for various industrial and technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17:967–78.

    Article  CAS  PubMed  Google Scholar 

  2. Baino F, Hamzehlou S, Kargozar S. Bioactive glasses: where are we and where are we going? J Funct Biomater. 2018;9:25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dietrich E, Oudadesse H, Le FM, Bureau B, Gloriant T. In vitro chemical reactivity of doped bioactive glasses: an original approach by solid-state NMR spectroscopy. Adv Eng Mater. 2009;11:98–105.

    Article  Google Scholar 

  4. Dietrich E, Oudadesse H, Lucas-Girot A, Mami M. In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res Part A. 2009;88:1087–96.

    Article  Google Scholar 

  5. Rocton N, Oudadesse H, Lefeuvre B, Peisker H, Rbii K. Fine analysis of interaction mechanism of bioactive glass surface after soaking in SBF solution: AFM and ICP-OES investigations. Appl Surf Sci. 2020;505:144076. https://doi.org/10.1016/j.apsusc.2019.144076.

    Article  CAS  Google Scholar 

  6. Bui XV, Nguyen VB, Le TTH, Do QM. “In vitro” apatite formation on the surface of bioactive glass. Glass Phys Chem. 2013;39:64–6.

    Article  CAS  Google Scholar 

  7. Rocton N, Oudadesse H, Lefeuvre B. Comparison of Zn and Sr effects on thermal properties and on the excess entropy of doped glasses for use in the biomedical field. Thermochim Acta. 2018;668:58–64.

    Article  CAS  Google Scholar 

  8. Wers E, Oudadesse H. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115:2137–44.

    Article  CAS  Google Scholar 

  9. Wers E, Oudadesse H, Lefeuvre B, Lucas-Girot A, Rocherullé J, Lebullenger R. Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses. J Therm Anal Calorim. 2014;117:579–88.

    Article  CAS  Google Scholar 

  10. Wers E, Oudadesse H, Lefeuvre B, Bureau B, Merdrignac-Conanec O. Thermal investigations of Ti and Ag-doped bioactive glasses. Thermochim Acta. 2014;580:79–84. https://doi.org/10.1016/j.tca.2014.02.001.

    Article  CAS  Google Scholar 

  11. Chand NRK, Sudhakar BK, Ravikumar G, Gayathri V, Devika P, Vennela T, et al. Influence of multi valent states of vanadium ions in ZnO doped novel calcium fluoro phosphate bio glasses. J Mech Behav Biomed Mater. 2022;131:105230. https://doi.org/10.1016/j.jmbbm.2022.105230.

    Article  CAS  PubMed  Google Scholar 

  12. El-Damrawi G, Hassan A, Kamal H, Aboelez M, Labeeb S. Structural investigations on Na2O–CaO–V2O5–SiO2 bioglass ceramics. Br J Appl Sci Technol. 2016;16:1–9.

    Article  Google Scholar 

  13. Lu X, Neeway JJ, Ryan JV, Du J. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses. J Non Cryst Solids. 2016;452:161–8.

    Article  CAS  Google Scholar 

  14. Gin S, Frugier P, Jollivet P, Bruguier F, Curti E. New insight into the residual rate of borosilicate glasses: effect of s/v and glass composition. Int J Appl Glas Sci. 2013;4:371–82.

    Article  CAS  Google Scholar 

  15. Chen Q. Optical linear & nonlinearity and Faraday rotation study on V2O5 nanorod doped glass and glass-ceramic: impact of optical basicity. J Alloys Compd. 2020;836:155490. https://doi.org/10.1016/j.jallcom.2020.155490.

    Article  CAS  Google Scholar 

  16. Ori G, Montorsi M, Pedone A, Siligardi C. Insight into the structure of vanadium containing glasses: a molecular dynamics study. J Non Cryst Solids. 2011;357:2571–9. https://doi.org/10.1016/j.jnoncrysol.2011.02.002.

    Article  CAS  Google Scholar 

  17. Marzouk MA, Fayad AM, Elbatal FH. Comparative evaluation of vanadium ions in Na2O–CaO–P2O5 and Na2O–CaF2–P2O5 glasses by spectroscopic analysis and effects of gamma-rays interaction. SILICON. 2019;11:15–23.

    Article  CAS  Google Scholar 

  18. Kerkouri N, Haddad M, Et-Tabirou M, Chahine A, Laânab L. FTIR, Raman, EPR and optical absorption spectral studies on V2O5-doped cadmium phosphate glasses. Phys B Condens Matter. 2011;406:3142–8.

    Article  CAS  Google Scholar 

  19. Sengupta P, Dey KK, Halder R, Ajithkumar TG, Abraham G, Mishra RK, et al. Vanadium in borosilicate glass. J Am Ceram Soc. 2015;98:88–96.

    Article  CAS  Google Scholar 

  20. Lu X, Sun R, Huang L, Ryan JV, Vienna JD, Du J. Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: toward development of high crack resistant glasses for nuclear waste disposal. J Non Cryst Solids. 2019;515:88–97. https://doi.org/10.1016/j.jnoncrysol.2019.04.009.

    Article  CAS  Google Scholar 

  21. Colak SC. The effect of V2O5/MgO substitution on SiO2–Na2O–CaO–ZnO–MgO glass structure. Optik (Stuttg). 2022;271:170022.

    Article  CAS  Google Scholar 

  22. Kashif I, Abd El-Maboud A, Ratep A. Effect of Nd2O3 addition on structure and characterization of lead bismuth borate glass. Results Phys. 2014;4:1–5. https://doi.org/10.1016/j.rinp.2013.11.002.

    Article  Google Scholar 

  23. Mansour SF, Sayed Yousef E, Hassaan MY, Emara AM. The influence of oxides on the optical properties of tellurite glasses. Phys Scr. 2014;89:115812.

    Article  Google Scholar 

  24. Marzuki A, Djeksadipura WMS, Suryanti V, Fausta DE, Saraswati A, Singgih GT. Compositional dependence of density and refractive index in borotellurite glass. J Phys Conf Ser. 2021;18:1912.

    Google Scholar 

  25. Gaddam A, Allu AR, Fernandes HR, Stan GE, Negrila CC, Jamale AP, et al. Role of vanadium oxide on the lithium silicate glass structure and properties. J Am Ceram Soc. 2021;104:2495–505.

    Article  CAS  Google Scholar 

  26. Kumar V, Sharma S, Pandey OP, Singh K. Thermal and physical properties of 30SrO-40SiO2–20B2O3–10A2O3 (A = La, Y, Al) glasses and their chemical reaction with bismuth vanadate for SOFC. Solid State Ionics. 2010;181:79–85. https://doi.org/10.1016/j.ssi.2009.12.005.

    Article  CAS  Google Scholar 

  27. Mehta N, Tiwari RS, Kumar A. Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater Res Bull. 2006;41:1664–72.

    Article  CAS  Google Scholar 

  28. Shaaban ER, Yahia IS, Fadel M. Effect of composition on the thermal stability for Ge–In–Se intermediate compound. J Alloys Compd. 2009;469:427–32.

    Article  CAS  Google Scholar 

  29. Aly KA, Dahshan A, Saddeek YB. Effect of MoO3 additions on the thermal stability and crystallization kinetics of PbO–Sb2O3–As2O3 glasses. J Therm Anal Calorim. 2010;100:543–9.

    Article  CAS  Google Scholar 

  30. Vyas VK, Kumar AS, Tripathi H, Singh SP, Pyare R. Effect of Cr2O3 addition on their bioactivity and physico-mechanical properties of 45S5 bioactive glass and glass-ceramic. Int J Eng Res Technol. 2014;3:1479–90.

    Google Scholar 

  31. Nor NM, Kamari HM, Latif AA, Shah NM, Shahrol Nidzam NN, Yusof NN, et al. Physical, structural and optical characterization of silica-borotellurite glasses containing vanadium and nickel ions. Phys B Condens Matter. 2022;627:413553. https://doi.org/10.1016/j.physb.2021.413553.

    Article  CAS  Google Scholar 

  32. Rada S, Pascuta P, Culea M, Maties V, Rada M, Barlea M, et al. The local structure of europium-lead-borate glass ceramics. J Mol Struct. 2009;924–926:89–92. https://doi.org/10.1016/j.molstruc.2008.12.032.

    Article  CAS  Google Scholar 

  33. Yadav A, Khasa S, Hooda A, Dahiya MS, Agarwal A, Chand P. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions. Spectrochim Acta Part A Mol Biomol Spectrosc. 2016;157:129–37. https://doi.org/10.1016/j.saa.2015.12.027.

    Article  CAS  Google Scholar 

  34. Shylesh S, Singh AP. Vanadium-containing ordered mesoporous silicates: does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41? J Catal. 2005;233:359–71.

    Article  CAS  Google Scholar 

  35. Li J, Li X, Li J, Pu X, Wang J, Huang Z, et al. Effects of incorporated vanadium and its chemical states on morphology and mesostructure of mesoporous bioactive glass particles. Microporous Mesoporous Mater. 2021;319:111061. https://doi.org/10.1016/j.micromeso.2021.111061.

    Article  CAS  Google Scholar 

  36. Assem EE, Mahmoud KR, Sharshar T, Siligardi C. Structure, magnetic and positron lifetime studies on CaO–ZrO 2-SiO2 glass system doped with vanadium oxide. J Phys D Appl Phys. 2006;39:734–9.

    Article  CAS  Google Scholar 

  37. Nassar AMA, Ghoneim NA. Vanadium contribution in different glasses in view of the ligand field theory. J Non Cryst Solids North-Holland. 1981;46:181–95.

    Article  CAS  Google Scholar 

  38. Fritsch E, Babonneau F, Sanchez C, Calas G. Vanadium incorporation in silica glasses. J Non Cryst Solids. 1987;92:282–94.

    Article  CAS  Google Scholar 

  39. Leister M, Ehrt D, Von Der Gönna G, Rüssel C, Breitbarth FW. Redox states and coordination of vanadium in sodium silicates melted at high temperatures. Phys Chem Glass. 1999;40:319–25.

    CAS  Google Scholar 

  40. Johnston WD. Optical spectra of the various valence states of vanadium in Na2 O2SiO2 glass. J Am Ceram Soc. 1965;48:608–11.

    Article  CAS  Google Scholar 

  41. Ferrari AM, Leonelli C, Pellacani GC, Siligardi C. Effect of V2O5 addition on the crystallisation of glasses belonging to the CaO–ZrO2–SiO2 system. J Non Cryst Solids. 2003;315:77–88.

    Article  CAS  Google Scholar 

  42. Majhi MR, Pyare R, Singh SP. Studies on preparation and characterizations of CaO–Na2O–SiO2–P2O5 bioglass ceramics substituted with Al2O3, TiO2 and ZrO2. J Biomater Tissue Eng. 2012;2:154–69.

    Article  CAS  Google Scholar 

  43. Catauro M, Dell’Era A, Vecchio CS. Synthesis, structural, spectroscopic and thermoanalytical study of sol-gel derived SiO2–CaO–P2O5 gel and ceramic materials. Thermochim Acta. 2016;625:20–7. https://doi.org/10.1016/j.tca.2015.12.004.

    Article  CAS  Google Scholar 

  44. Catauro M, Laudisio G, Costantini A, Fresa R, Branda F. Low temperature synthesis, structure and bioactivity of 2CaO·3SiO2 glass. J Sol-Gel Sci Technol. 1997;10:231–7.

    Article  CAS  Google Scholar 

  45. Balaji Rao R, Veeraiah N. Study on some physical properties of Li2O-MO-B2O3: V2O5 glasses. Phys B Condens Matter. 2004;348:256–71.

    Article  Google Scholar 

  46. Bellucci D, Bolelli G, Cannillo V, Cattini A, Sola A. In situ Raman spectroscopy investigation of bioactive glass reactivity: simulated body fluid solution vs TRIS-buffered solution. Mater Charact. 2011;62:1021–8. https://doi.org/10.1016/j.matchar.2011.07.008.

    Article  CAS  Google Scholar 

  47. Silva AMB, Queiroz CM, Agathopoulos S, Correia RN, Fernandes MHV, Oliveira JM. Structure of SiO2–MgO–Na2O glasses by FTIR, Raman and 29Si MAS NMR. J Mol Struct. 2011;986:16–21.

    Article  CAS  Google Scholar 

  48. Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K. Structural variations of bioactive glasses obtained by different synthesis routes. Ceram Int. 2016;42:14700–9. https://doi.org/10.1016/j.ceramint.2016.06.095.

    Article  CAS  Google Scholar 

  49. Lin CC, Leung KS, Shen P, Chen SF. Elasticity and structure of the compounds in the wollastonite (CaSiO3)–Na2SiO3 system: from amorphous to crystalline state. J Mater Sci Mater Med. 2015;26:1–14.

    Article  Google Scholar 

  50. Yadav AK, Singh P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 2015;5:67583–609. https://doi.org/10.1039/C5RA13043C.

    Article  CAS  Google Scholar 

  51. Sullivan RJ, Srinivasan TT, Newnham RE. Synthesis of V2O3 powder by evaporative decomposition of solutions and h2 reduction. J Am Ceram Soc. 1990;73:3715–7.

    Article  CAS  Google Scholar 

  52. Kumar MP, Sankarappa T, Awasthi AM. Thermal and electrical properties of some single and mixed transition-metal ions-doped tellurite glasses. Phys B Condens Matter. 2008;403:4088–95.

    Article  CAS  Google Scholar 

  53. Robinson GR, Haas JL. Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals; an empirical method of prediction. Am Miner. 1983;68:541–53.

    CAS  Google Scholar 

  54. Zarzycki J. Les verres et l’état vitreux. 1st ed. Paris: Masson; 1982.

    Google Scholar 

Download references

Acknowledgements

Authors would like to knowledge Christophe Calers from CMEBA and Nathalie Herbert from ISCR UMR CNRS 2662 for their precious help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nada Hamrouni or Hassane Oudadesse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamrouni, N., Oudadesse, H., Lefeuvre, B. et al. Exploring the impact of vanadium on physical, structural and thermal properties of bioactive glass 46S6: a comparative study with other metallic elements. J Therm Anal Calorim 148, 13245–13261 (2023). https://doi.org/10.1007/s10973-023-12632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12632-0

Keywords

Navigation