Skip to main content
Log in

Using composite of phase change materials and aluminum wires to optimize thermal and electrical efficiencies of photovoltaic module

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this research is optimizing electrical and thermal efficiencies of a photovoltaic (PV) module integrated with phase change materials (PCMs) and Aluminum (AL) wires. Composites of glycerol and beeswax (GLBW) and the mixture of GLBW with paraffin (GLBWP) are presented as new PCMs. PCMs are applied in PV module to regulate its temperature. Aluminum wires are added to GLBWP composite to increase its thermal conductivity. Response surface methodology (RSM) is used to analyze the dependent variables which are the thermal and electrical efficiencies (ηth and ηe) and the optimum condition of the PV/AL-GLBWP system is achieved. The chosen independent factors of the cooling system are glycerol volume fraction in GLBW (A = 0–100% volume), GLBW volume fraction in GLBWP (B = 0–50% volume), and AL mass in GLBWP (C = 0–50g). Cold water is used to decrease the temperature of the PV module through a heat exchanger embedded in the PCM container. The results show that the composite of glycerol, beeswax and paraffin makes the PCM, which put out more thermal and electrical efficiencies than pure paraffin. Results indicate that for the system with no cooling, ηth and ηe are 53.27% and 9.05%, respectively. The addition of AL wire to PCMs noticeably increases the performance of cooling system. The values of thermal and electrical efficiencies are predicted at the highest point, which are 97.67% and 12.98%, respectively, at 75% GLBW, 37.5% GLBWP, and 37.5 g AL wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A module :

Entire area of the PV module (mm2)

A collector :

The collector entire area (mm2)

I :

Current of the PV arrays (A)

I solar :

The solar intensity (W m2)

Q :

The useful accumulated heat (W)

P max :

PV module maximum power (W)

P PCM :

Power generated by PCM (maximum value) (W)

Q :

Flow rate of water (mL min1)

V :

Voltage of photovoltaic arrays (v)

W :

Mass of aluminum (g)

T s,ave :

PV module average surface temperature (°C)

η th :

Thermal efficiency (−)

η e :

Electrical efficiency (−)

Max:

Maximum

Ave:

Average

PV:

Photovoltaic

GLBW:

Glycerol-bees wax composite

GL:

Glycerol

DOE:

Design of experiments

BW:

Beeswax

PCM:

Phase change material

GLBWP:

Glycerol-beeswax-paraffin composite

AL:

Aluminum

RSM:

Response surface methodology

References

  1. Maleki A, Ngo PTT, Shahrestani MI. Energy and exergy analysis of a PV module cooled by an active cooling approach. J Therm Anal Calorim. 2020;141:2475–85.

    Article  CAS  Google Scholar 

  2. Firoozzadeh M, Shiravi AH, Shafiee M. Thermodynamics assessment on cooling photovoltaic modules by phase change materials (PCMs) in critical operating temperature. J Therm Anal Calorim. 2021;144:1239–51. https://doi.org/10.1007/s10973-020-09565-3.

    Article  CAS  Google Scholar 

  3. Nouira M, Sammouda H, Azimi N. Impact of building integrated photovoltaic-phase change material panels on building energy efficiency improvement: a case study. Energy Sources, Part A: Recov, Util, Environ Effects. 2022;44(3):7453–82.

    Article  CAS  Google Scholar 

  4. Chandel SS, Agarwal T. Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renew Sustain Energy Rev. 2017;73:1342–51.

    Article  Google Scholar 

  5. Chandrasekar M, Rajkumar S, Valavan D. A review on the thermal regulation techniques for non-integrated flat PV modules mounted on building top. Energy Build. 2015;86:692–7.

    Article  Google Scholar 

  6. Dadashi Z, Mahmoudi A, Rashidi S. Capacity and strategies of energy production from renewable sources in Arab countries until 2030: a review from renewable energy potentials to environmental issues. Environ Sci Pollut Res. 2022;29:47837–66.

    Article  Google Scholar 

  7. Teo HG, Lee PS, Hawlader MNA. An active cooling system for photovoltaic modules. Appl Energy. 2012;90:309–15.

    Article  Google Scholar 

  8. Swapnil D, Sandhu GS, Tiwari GN. Analytical expression for electrical efficiency of PV/T hybrid air collector. Appl Energy. 2009;86:697–705.

    Article  Google Scholar 

  9. He W, Chow T-T, Ji J, Jianping Lu, Pei G, Chan L-S. Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water. Appl Energy. 2006;83:199–210.

    Article  CAS  Google Scholar 

  10. Siecker J, Kusakana K, Numbi BP. A review of solar photovoltaic systems cooling technologies. Renew Sustain Energy Rev. 2017;79:192–203.

    Article  CAS  Google Scholar 

  11. Kumar K, Sharma SD, Jain L. Standalone Photovoltaic (PV) module outdoor testing facility for UAE Climate. Submitted to CSEM-UAE Innovation Centre LLC; (2007).

  12. Preet S. Water and phase change material based photovoltaic thermal managementsystems: a review. Renew Sustain Energy Rev. 2018;82:791–807.

    Article  CAS  Google Scholar 

  13. Ebaid MS, Ghrair AM, Al-Busoul M. Experimental investigation of cooling photovoltaic (PV) modules using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Convers Manag. 2018;155:324–43.

    Article  CAS  Google Scholar 

  14. Hadipour AH, Zargarabadi MR, Rashidi S. An efficient pulsed- spray water cooling system for photovoltaic panels: experimental study and cost analysis. Renew Energy. 2021;164:867–75.

    Article  Google Scholar 

  15. Garud KS, Lee M-Y. Thermodynamic, environmental and economic analyses of photovoltaic/thermal-thermoelectric generator system using single and hybrid particle nanofluids. Energy. 2022;255: 124515.

    Article  CAS  Google Scholar 

  16. Zhang H, Yue H, Huang J, Liang K, Chen H. Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module. Renew Energy. 2021;171:1026–40.

    Article  Google Scholar 

  17. Maleki A, Haghighi A, El Haj M, Assad IM. Mohammad Alhuyi Nazari, A review on the approaches employed for cooling PV cells. Sol Energy. 2020;209:170–85.

    Article  Google Scholar 

  18. Ghorab M, Entchev E, Yang L. Inclusive analysis and performance evaluation of solar domestic hot water system (a case study). Alexandria Eng J. 2017;56:201–12. https://doi.org/10.1016/j.aej.2017.01.033.

    Article  Google Scholar 

  19. Kabeel AE, El-Said EMS. A hybrid solar desalination system of air humidification dehumidification and water flashing evaporation: part I. A numerical investigation. Desalination. 2013;320:56–72. https://doi.org/10.1016/J.DESAL.2013.04.016.

    Article  CAS  Google Scholar 

  20. Slultz JW, Wren LC. Thermal performance testing and analysis of photovoltaic modules in natural sunlight. Pasadena, California: Jet propulsion Laboratory; 1978.

    Google Scholar 

  21. Gunther E, Heibler S, Mehling H, Redich R. Enthalpy of phase change materials as a function of temperature: required accuracy and suitable measurement methods. Technol Energy Syst Renew Energy. 2009;30:1257–69.

    Google Scholar 

  22. Huang MJ, Eames OC, Norton B. The application of computational fluid dynamics to predict the performance of phase change materials for control of photovoltaic cell temperature in buildings. World renewable energy congress VI. Oxford:Pergamon; 2000. p. 2123–6.

  23. Atkin P, Farid MM. Improving efficiency of photovoltaic cells using PCM infused graphite and aluminum fins. Sol Energy. 2015;114:217–28.

    Article  CAS  Google Scholar 

  24. Kibria MA, Saidur R, Al-Sulaiman FA, Aziz MMA. Development of a thermal model for a hybrid photovoltaic module and phase change materials storage integrated in buildings. Sol Energy. 2016;124:114–23.

    Article  Google Scholar 

  25. Emam M, Ookawara S, Ahmed M. Performance study and analysis of an inclined concentrated photovoltaic-phase change material system. Sol Energy. 2017;150:229–45.

    Article  Google Scholar 

  26. Hasan A, Sarwar J, Alnoman H, Abdelbaqi S. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Sol Energy. 2017;146:417–29. https://doi.org/10.1016/J.SOLENER.2017.01.070.

    Article  Google Scholar 

  27. Park J, Kim T, Leigh SB. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considerin the annual weather conditions. Sol Energy. 2014;105:561–74. https://doi.org/10.1016/j.solener.2014.04.020.

    Article  Google Scholar 

  28. Hasan A, McCormack SJ, Huang MJ, Norton B. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol Energy. 2010;84:1601–12. https://doi.org/10.1016/j.solener.2010.06.010.

    Article  CAS  Google Scholar 

  29. Azimi N, Davoodbeygi Y, Rahimi M, Ahmadi S, Karami E, Roshani M. Optimization of thermal and electrical efficiencies of a photovoltaic module using combined PCMs with a thermo-conductive filler. Sol Energy. 2022;231:283–96.

    Article  CAS  Google Scholar 

  30. Rahimi M, Azimi N, Nouira M, Shahsavar A. Experimental study on photovoltaic panels integrated with metal matrix sheets and bio-based phase change materials. Energy. 2023;262: 125371.

    Article  CAS  Google Scholar 

  31. Shastry DMC, Arunachala UC. Thermal management of photovoltaic module with metal matrix embedded PCM. J Storage Mater. 2020;28:101312. https://doi.org/10.1016/j.est.2020.101312.

    Article  Google Scholar 

  32. Javidan M, Moghadam AJ. Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling. Energy Convers Manage. 2021;228: 113686. https://doi.org/10.1016/j.enconman.2020.113686.

    Article  Google Scholar 

  33. Karami B, Azimi N, Ahmadi S. Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (E.G.)/paraffin-beef tallow-coconut oil composite as phase change material. Renew Energy. 2021;178:25–49.

    Article  CAS  Google Scholar 

  34. Rahimi M, Karimi E, Asadi M, Valeh-e-Sheyda P. Heat transfer augmentation in a hybrid microchannel solar cell. Int Commun Heat Mass Transfer. 2013;43:131–7.

    Article  Google Scholar 

  35. Rostami Z, Heidari N, Rahimi M, Azimi N. Enhancing the thermal performance of a photovoltaic module using nano-graphite/paraffin composite as phase change material. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10726-1.

    Article  Google Scholar 

  36. Chaichan MT, Kazem HA, Al-Waeli AHA, Sopian K. Controlling the melting and solidification points temperature of PCMs on the performance and economic return of the water-cooled photovoltaic thermal system. Sol Energy. 2021;224:1344–57.

    Article  CAS  Google Scholar 

  37. Sudhakar P, Santosh R, Asthalakshmi B, Kumaresan G, Velraj R. Performance augmentation of solar photovoltaic module through PCM integrated natural water circulation cooling technique. Renew Energy. 2021;214:2455. https://doi.org/10.1016/j.renene.2020.11.138.

    Article  Google Scholar 

  38. Akshayveer AK, Singh AP, Singh OP. Effect of novel PCM encapsulation designs on electrical and thermal performance of a hybrid photovoltaic solar module. Sol Energy. 2020;205:320–33.

    Article  Google Scholar 

  39. Khanna S, Reddy KS, Mallick TK. Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions. Energy. 2017;133:887–99.

    Article  Google Scholar 

  40. Rajvikram M, Leoponraj S, Ramkumar S, Akshaya H, Dheeraj A. Experimental investigation on the abasement of operating temperature in solar photovoltaic module using PCM and Aluminum. Sol Energy. 2019;188:327–38.

    Article  Google Scholar 

  41. Senthil Kumar K, Revanth S, Sanjeev D, Sabesh Kumar P, Surya P, Experimental investigation of improving the energy conversion efficiency of PV cell by integrating with PCM,

  42. Jamil F, Ali HM, Nasir MA, Karahan M, Janjua MM, Naseer A, Ejaz A, Pasha RA. Evaluation of photovoltaic modules using different nano phase change material and a concise comparison: an experimental study. Renew Energy. 2021;169:1265e1279.

    Article  Google Scholar 

  43. Sivashankar M, Selvam C, Manikandan S, Harish S. Performance improvement in concentrated photovoltaics using nano-enhanced phase change material with graphene nanoplatelets. Energy. 2020;208:118408. https://doi.org/10.1016/j.energy.2020.118408.

    Article  CAS  Google Scholar 

  44. Kumar KS, Revanth S, Sanjeev D, Sabesh Kumar P, Surya P. Experimental investigation of improving the energy conversion efficiency of PV cell by integrating with PCM. Mater Today: Proc. 2021;37:712–6.

    Google Scholar 

  45. Zhang Y, Zhang X. Thermal properties of a new type of calcium chloride hexahydrate-magnesium chloride hexahydrate/expanded graphite composite phase change material and its application in photovoltaic heat dissipation. Sol Energy. 2020;204:683–95.

    Article  CAS  Google Scholar 

  46. Qasim MA, Ali HM, Khan MN, Arshad N, Khaliq D, Ali Z, Janjua MM. The effect of using hybrid phase change materials on thermal management of photovoltaic modules–an experimental study. Sol Energy. 2020;209:415–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghale, A., Rahimi, M. & Azimi, N. Using composite of phase change materials and aluminum wires to optimize thermal and electrical efficiencies of photovoltaic module. J Therm Anal Calorim 148, 13587–13605 (2023). https://doi.org/10.1007/s10973-023-12624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12624-0

Keywords

Navigation