Skip to main content
Log in

Nusselt number estimation using a GBR-GSO-based machine learning predictive model in alumina and titania nanofluids in a boiling process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In current study, a flow boiling experimental examination has been performed on water, water-TiO2 nanofluid, and water-Al2O3 nanofluid and Gradient Boost Regression model was established to predict the Nusselt number of TiO2 and Al2O3 nanofluids. Nusselt number was calculated by varying heat flux, Reynolds number, and volumetric concentration. Good agreement was shown by water results acquired from experiments with the correlation of Chen and CFD. Results demonstrated that the Nusselt number of TiO2 and Al2O3 nanofluid was larger than water. Increment in Nusselt number was noticed with the increment in concentration, heat flux, and Reynolds number. It was seen that Al2O3 nanofluid was superior to TiO2 nanofluid. Highest improvement in the Nusselt number was 37% shown by Al2O3 nanofluid when compared to water. Correlations of Nusselt number were developed for both nanofluids. GBR-GSO machine learning model showed a good agreement with the experimental Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\({c}_{\rm l}\) :

Specific heat capacity of liquid, J Kg1 K1

C:

Concentration

\({D}_{\mathrm{h}}\) :

Hydraulic diameter of the tube, m

F:

Two-phase multiplier

h:

Heat transfer coefficient, Wm2 K1

\({H}_{\mathrm{fg}}\) :

Enthalpy of vaporization, Jkg1

k:

Turbulent kinetic energy, m2s2

\({k}_{\mathrm{l}}\) :

Thermal conductivity of the liquid, Wm1 K1

\(\dot{m}\) :

Mass flux, kgm2 s1

m:

Nanoparticle mass, kg

Nu:

Nusselt number

Pr:

Prandtl number

Q:

Heat, J

q:

Heat flux, Wm2

R2 :

Coefficient of determination

Re:

Reynolds number

S:

Suppression factor

Sq :

Use defined source term

v:

Velocity, ms1

x:

Vapor quality

Xtt :

Martinelli parameter

CAD:

Computer-aided design

CFD:

Computational fluid dynamics

EG:

Ethylene glycol

EPE:

Expanded poly ethylene

GBR:

Gradient boost regressor

GSO:

Grid search optimization

HTC:

Heat transfer coefficient

MWCNT:

Multi-walled carbon nano tube

MAE:

Mean absolute error

MSE:

Mean square error

RANS:

Reynolds averaged navier–stokes

RMSE:

Root mean square error

RNG:

Re-normalisation group

RPI:

Rensselaer polytechnic institute

SS:

Stainless steel

SST:

Shear stress transport

UVM:

Ultrasonic vibration machine

bf:

Base fluid

C:

Convective

cb:

Convective boiling

E:

Evaporative

FZ:

Forster-Zuber’s

g:

Vapor phase

l:

Liquid

nb:

Nucleate boiling

np:

Nanoparticle

Q:

Quenching

tp:

Two-phase

\(\Delta P\) :

Difference in wall and saturation pressure, Pa

\(\Delta T\) :

Difference in wall and saturation temperature, K

\(\alpha\) :

Volume fraction

\(\varepsilon\) :

Rate of dissipation of turbulent kinetic energy, m2s3

\(\mu\) :

Dynamic viscosity, kgm1 s1

\(\nu\) :

Kinematic viscosity, m2 s−1

\(\rho\) :

Density, kgm3

\(\sigma\) :

Surface tension, Nm−1

\(\tau\) :

Stress–strain tensor

\(\varnothing\) :

Nanofluid volumetric concentration

References

  1. Choi S, Eastman J “Enhancing thermal conductivity of fluids with nanoparticles,” in Proceedings of the ASME international mechanical engineering congress and exposition. New York: ASME, 1995, pp. 99–106https://www.researchgate.net/publication/236353373

  2. Karimzadehkhouei M, Sezen M, Şendur K, Pınar Mengüç M, Koşar A. Subcooled flow boiling heat transfer of γ-Al2O3/water nanofluids in horizontal microtubes and the effect of surface characteristics and nanoparticle deposition. Appl Therm Eng. 2017;127:536–46. https://doi.org/10.1016/j.applthermaleng.2017.08.041.

    Article  CAS  Google Scholar 

  3. Morshed AKMM, Yang F, Ali YM, Khan JA, Li C. Enhanced flow boiling in a microchannel with integration of nanowires. Appl Therm Eng. 2011;32:68–75. https://doi.org/10.1016/j.applthermaleng.2011.08.031.

    Article  CAS  Google Scholar 

  4. Sarwar MS, Jeong YH, Chang SH. Subcooled flow boiling CHF enhancement with porous surface coatings. Int J Heat Mass Transf. 2007;50(17–18):3649–57. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.011.

    Article  CAS  Google Scholar 

  5. Abedini E, Zarei T, Afrand M, Wongwises S. Experimental study of transition flow from single phase to two phase flow boiling in nanofluids. J Mol Liq. 2017;231:11–9. https://doi.org/10.1016/j.molliq.2017.01.049.

    Article  CAS  Google Scholar 

  6. Bai P, Tang T, Tang B. Enhanced flow boiling in parallel microchannels with metallic porous coating. Appl Therm Eng. 2013;58(1–2):291–7. https://doi.org/10.1016/j.applthermaleng.2013.04.067.

    Article  CAS  Google Scholar 

  7. Suresh S, Selvakumar P, Chandrasekar M, Raman VS. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid under turbulent flow with spiraled rod inserts. Chem Eng Process Process Intensif. 2012;53:24–30. https://doi.org/10.1016/j.cep.2011.12.013.

    Article  CAS  Google Scholar 

  8. Mohammed HA, Ali Abuobeida IAM, Vuthaluru HB, Liu S. “Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts. Int Commun Heat Mass Transf. 2019;101:10–20. https://doi.org/10.1016/j.icheatmasstransfer.2018.12.010

    Article  CAS  Google Scholar 

  9. Patra N, Ghosh P, Singh RS, Nayak A. Flow visualization in dilute oxide based nanofluid boiling. Int J Heat Mass Transf. 2019;135:331–44. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.145.

    Article  CAS  Google Scholar 

  10. Paul G, Das PK, Manna I. Assessment of the process of boiling heat transfer during rewetting of a vertical tube bottom flooded by alumina nanofluid. Int J Heat Mass Transf. 2016;94:390–402. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.013.

    Article  CAS  Google Scholar 

  11. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1–3):334–44. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.024.

    Article  CAS  Google Scholar 

  12. Qi C, Wan YL, Li CY, Han DT, Rao ZH. Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube. Int J Heat Mass Transf. 2017;115:1072–84. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.098.

    Article  CAS  Google Scholar 

  13. Zhou J, et al. Saturated flow boiling heat transfer investigation for nanofluid in minichannel. Exp Therm Fluid Sci. 2017;85:189–200. https://doi.org/10.1016/j.expthermflusci.2017.03.002.

    Article  CAS  Google Scholar 

  14. Sarafraz MM, Hormozi F. Scale formation and subcooled flow boiling heat transfer of CuO-water nanofluid inside the vertical annulus. Exp Therm Fluid Sci. 2014;52:205–14. https://doi.org/10.1016/j.expthermflusci.2013.09.012.

    Article  CAS  Google Scholar 

  15. Sarafraz MM, Hormozi F. Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids. Powder Technol. 2016;287:412–30. https://doi.org/10.1016/j.powtec.2015.10.022.

    Article  CAS  Google Scholar 

  16. Rana KB, Agrawal GD, Mathur J, Puli U. Measurement of void fraction in flow boiling of ZnO-water nanofluids using image processing technique. Nucl Eng Des. 2014;270:217–26. https://doi.org/10.1016/j.nucengdes.2014.01.008.

    Article  CAS  Google Scholar 

  17. Nikkhah V, Sarafraz MM, Hormozi F. Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q. 2015;29(3):405–15. https://doi.org/10.15255/CABEQ.2014.2069.

    Article  CAS  Google Scholar 

  18. Rabiee A, Atf A. A computational fluid dynamics investigation of various nanofluids in a boiling flow field. Prog Nucl Energy. 2017;95:61–9. https://doi.org/10.1016/j.pnucene.2016.11.013.

    Article  CAS  Google Scholar 

  19. Isman MK. Numerical studies on convective heat transfer of Al2O3 nanofluid in circular pipe. Heat Mass Transf und Stoffuebertragung. 2020;56(5):1421–8. https://doi.org/10.1007/s00231-019-02800-0.

    Article  CAS  Google Scholar 

  20. Biswas N, Manna NK, Datta P, Mahapatra PS. Analysis of heat transfer and pumping power for bottom-heated porous cavity saturated with Cu-water nanofluid. London: Elsevier; 2018. https://doi.org/10.1016/j.powtec.2017.12.030

    Book  Google Scholar 

  21. Biswas N, Sarkar UK, Chamkha AJ, Manna NK. Magneto-hydrodynamic thermal convection of Cu–Al2O3/water hybrid nanofluid saturated with porous media subjected to half-sinusoidal nonuniform heating. J Therm Anal Calorim. 2021;143(2):1727–53. https://doi.org/10.1007/s10973-020-10123-0.

    Article  CAS  Google Scholar 

  22. Biswas N, Manna NK, Chamkha AJ. Effects of half-sinusoidal nonuniform heating during MHD thermal convection in Cu–Al2O3/water hybrid nanofluid saturated with porous media. J Therm Anal Calorim. 2021;143(2):1665–88. https://doi.org/10.1007/s10973-020-10109-y.

    Article  CAS  Google Scholar 

  23. Singh HM, Sharma DP, Alade IO. “GBR-GSO based machine learning predictive model for estimating density of Al2N3, Si3N4, and TiN nanoparticles suspended in ethylene glycol nanofluids. Eur Phys J Plus. 2022. https://doi.org/10.1140/epjp/s13360-022-02767-8.

    Article  Google Scholar 

  24. Sharma P, Ramesh K, Parameshwaran R, Deshmukh SS. Thermal conductivity prediction of titania-water nanofluid: a case study using different machine learning algorithms. Case Stud Therm Eng. 2022;30(2021):01658. https://doi.org/10.1016/j.csite.2021.101658

    Google Scholar 

  25. Chen JC. Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev. 1966;5(3):322–9. https://doi.org/10.1021/i260019a023.

    Article  CAS  Google Scholar 

  26. Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R. Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng. 2016;102:1024–36. https://doi.org/10.1016/j.applthermaleng.2016.04.051.

    Article  CAS  Google Scholar 

  27. Hussein AM, Sharma KV, Bakar RA, Kadirgama K. The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube. J Nanomater. 2013;2013:1–12. https://doi.org/10.1155/2013/859563.

    Article  CAS  Google Scholar 

  28. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17. https://doi.org/10.1016/0894-1777(88)90043-X.

    Article  Google Scholar 

  29. Yin X, Tian Y, Zhou D, Wang N. Numerical study of flow boiling in an intermediate-scale vertical tube under low heat flux. Appl Therm Eng. 2019;153:739–47. https://doi.org/10.1016/j.applthermaleng.2019.03.067.

    Article  Google Scholar 

  30. Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-epsilon eddy-viscosity model for high reynolds number turbulent flows-model development and validation. Comput Fluids. 1995;24(3):227–38. https://doi.org/10.1007/978-3-319-27386-0_7.

    Article  Google Scholar 

  31. Kurul N, Podowski MZ. “In: On the modeling of multidimensional effects in boiling channels,” Proc. 27th Natl. Heat Transf. Conf. Minneapolis, Minnesota, USA, 1991.

  32. Thai DK, Tu TM, Bui TQ, Bui TT. Gradient tree boosting machine learning on predicting the failure modes of the RC panels under impact loads. Eng Comput. 2021;37(1):597–608. https://doi.org/10.1007/s00366-019-00842-w.

    Article  Google Scholar 

  33. Kadam VJ, Jadhav SM. Performance analysis of hyperparameter optimization methods for ensemble learning with small and medium sized medical datasets. J Discret Math Sci Cryptogr. 2020;23(1):115–23. https://doi.org/10.1080/09720529.2020.1721871.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University Department, RTU, Kota, and MNIT, Jaipur.

Author information

Authors and Affiliations

Authors

Contributions

MD: conceptualization, investigation, writing-original draft preparation. S: methodology. KS: supervision. VS: writing-reviewing and editing. GJ: formal analysis.

Corresponding author

Correspondence to Manish Dadhich.

Ethics declarations

Conflict of interest

There is no conflict of interest by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadhich, M., Shekhar, Sambyo, K. et al. Nusselt number estimation using a GBR-GSO-based machine learning predictive model in alumina and titania nanofluids in a boiling process. J Therm Anal Calorim 148, 14225–14242 (2023). https://doi.org/10.1007/s10973-023-12619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12619-x

Keywords

Navigation